ONNX Runtime is a cross-platform inference and training machine-learning accelerator.
ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. Learn more →
ONNX Runtime training can accelerate the model training time on multi-node NVIDIA GPUs for transformer models with a one-line addition for existing PyTorch training scripts. Learn more →
This is a fork of onnxruntime modified to work on Hailo-8 devices. For instructions about how to install ONNX Runtime using Hailo as an Execution Provider and further details go to Hailo.
⚠ WARNING: This feature is still in preview.
General Information: onnxruntime.ai
Usage documention and tutorials: onnxruntime.ai/docs
Companion sample repositories:
- ONNX Runtime Inferencing: microsoft/onnxruntime-inference-examples
- ONNX Runtime Training: microsoft/onnxruntime-training-examples
System | CPU | GPU | EPs |
---|---|---|---|
Windows | |||
Linux | |||
Mac | |||
Android | |||
iOS | |||
WebAssembly |
Windows distributions of this project may collect usage data and send it to Microsoft to help improve our products and services. See the privacy statement for more details.
We welcome contributions! Please see the contribution guidelines.
For feature requests or bug reports, please file a GitHub Issue.
For general discussion or questions, please use GitHub Discussions.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
This project is licensed under the MIT License.