-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9cbbb12
commit 1354d14
Showing
3 changed files
with
259 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species | ||
1,5.1,3.5,1.4,0.2,Iris-setosa | ||
2,4.9,3.0,1.4,0.2,Iris-setosa | ||
3,4.7,3.2,1.3,0.2,Iris-setosa | ||
4,4.6,3.1,1.5,0.2,Iris-setosa | ||
5,5.0,3.6,1.4,0.2,Iris-setosa | ||
6,5.4,3.9,1.7,0.4,Iris-setosa | ||
7,4.6,3.4,1.4,0.3,Iris-setosa | ||
8,5.0,3.4,1.5,0.2,Iris-setosa | ||
9,4.4,2.9,1.4,0.2,Iris-setosa | ||
10,4.9,3.1,1.5,0.1,Iris-setosa | ||
11,5.4,3.7,1.5,0.2,Iris-setosa | ||
12,4.8,3.4,1.6,0.2,Iris-setosa | ||
13,4.8,3.0,1.4,0.1,Iris-setosa | ||
14,4.3,3.0,1.1,0.1,Iris-setosa | ||
15,5.8,4.0,1.2,0.2,Iris-setosa | ||
16,5.7,4.4,1.5,0.4,Iris-setosa | ||
17,5.4,3.9,1.3,0.4,Iris-setosa | ||
18,5.1,3.5,1.4,0.3,Iris-setosa | ||
19,5.7,3.8,1.7,0.3,Iris-setosa | ||
20,5.1,3.8,1.5,0.3,Iris-setosa | ||
21,5.4,3.4,1.7,0.2,Iris-setosa | ||
22,5.1,3.7,1.5,0.4,Iris-setosa | ||
23,4.6,3.6,1.0,0.2,Iris-setosa | ||
24,5.1,3.3,1.7,0.5,Iris-setosa | ||
25,4.8,3.4,1.9,0.2,Iris-setosa | ||
26,5.0,3.0,1.6,0.2,Iris-setosa | ||
27,5.0,3.4,1.6,0.4,Iris-setosa | ||
28,5.2,3.5,1.5,0.2,Iris-setosa | ||
29,5.2,3.4,1.4,0.2,Iris-setosa | ||
30,4.7,3.2,1.6,0.2,Iris-setosa | ||
31,4.8,3.1,1.6,0.2,Iris-setosa | ||
32,5.4,3.4,1.5,0.4,Iris-setosa | ||
33,5.2,4.1,1.5,0.1,Iris-setosa | ||
34,5.5,4.2,1.4,0.2,Iris-setosa | ||
35,4.9,3.1,1.5,0.1,Iris-setosa | ||
36,5.0,3.2,1.2,0.2,Iris-setosa | ||
37,5.5,3.5,1.3,0.2,Iris-setosa | ||
38,4.9,3.1,1.5,0.1,Iris-setosa | ||
39,4.4,3.0,1.3,0.2,Iris-setosa | ||
40,5.1,3.4,1.5,0.2,Iris-setosa | ||
41,5.0,3.5,1.3,0.3,Iris-setosa | ||
42,4.5,2.3,1.3,0.3,Iris-setosa | ||
43,4.4,3.2,1.3,0.2,Iris-setosa | ||
44,5.0,3.5,1.6,0.6,Iris-setosa | ||
45,5.1,3.8,1.9,0.4,Iris-setosa | ||
46,4.8,3.0,1.4,0.3,Iris-setosa | ||
47,5.1,3.8,1.6,0.2,Iris-setosa | ||
48,4.6,3.2,1.4,0.2,Iris-setosa | ||
49,5.3,3.7,1.5,0.2,Iris-setosa | ||
50,5.0,3.3,1.4,0.2,Iris-setosa | ||
51,7.0,3.2,4.7,1.4,Iris-versicolor | ||
52,6.4,3.2,4.5,1.5,Iris-versicolor | ||
53,6.9,3.1,4.9,1.5,Iris-versicolor | ||
54,5.5,2.3,4.0,1.3,Iris-versicolor | ||
55,6.5,2.8,4.6,1.5,Iris-versicolor | ||
56,5.7,2.8,4.5,1.3,Iris-versicolor | ||
57,6.3,3.3,4.7,1.6,Iris-versicolor | ||
58,4.9,2.4,3.3,1.0,Iris-versicolor | ||
59,6.6,2.9,4.6,1.3,Iris-versicolor | ||
60,5.2,2.7,3.9,1.4,Iris-versicolor | ||
61,5.0,2.0,3.5,1.0,Iris-versicolor | ||
62,5.9,3.0,4.2,1.5,Iris-versicolor | ||
63,6.0,2.2,4.0,1.0,Iris-versicolor | ||
64,6.1,2.9,4.7,1.4,Iris-versicolor | ||
65,5.6,2.9,3.6,1.3,Iris-versicolor | ||
66,6.7,3.1,4.4,1.4,Iris-versicolor | ||
67,5.6,3.0,4.5,1.5,Iris-versicolor | ||
68,5.8,2.7,4.1,1.0,Iris-versicolor | ||
69,6.2,2.2,4.5,1.5,Iris-versicolor | ||
70,5.6,2.5,3.9,1.1,Iris-versicolor | ||
71,5.9,3.2,4.8,1.8,Iris-versicolor | ||
72,6.1,2.8,4.0,1.3,Iris-versicolor | ||
73,6.3,2.5,4.9,1.5,Iris-versicolor | ||
74,6.1,2.8,4.7,1.2,Iris-versicolor | ||
75,6.4,2.9,4.3,1.3,Iris-versicolor | ||
76,6.6,3.0,4.4,1.4,Iris-versicolor | ||
77,6.8,2.8,4.8,1.4,Iris-versicolor | ||
78,6.7,3.0,5.0,1.7,Iris-versicolor | ||
79,6.0,2.9,4.5,1.5,Iris-versicolor | ||
80,5.7,2.6,3.5,1.0,Iris-versicolor | ||
81,5.5,2.4,3.8,1.1,Iris-versicolor | ||
82,5.5,2.4,3.7,1.0,Iris-versicolor | ||
83,5.8,2.7,3.9,1.2,Iris-versicolor | ||
84,6.0,2.7,5.1,1.6,Iris-versicolor | ||
85,5.4,3.0,4.5,1.5,Iris-versicolor | ||
86,6.0,3.4,4.5,1.6,Iris-versicolor | ||
87,6.7,3.1,4.7,1.5,Iris-versicolor | ||
88,6.3,2.3,4.4,1.3,Iris-versicolor | ||
89,5.6,3.0,4.1,1.3,Iris-versicolor | ||
90,5.5,2.5,4.0,1.3,Iris-versicolor | ||
91,5.5,2.6,4.4,1.2,Iris-versicolor | ||
92,6.1,3.0,4.6,1.4,Iris-versicolor | ||
93,5.8,2.6,4.0,1.2,Iris-versicolor | ||
94,5.0,2.3,3.3,1.0,Iris-versicolor | ||
95,5.6,2.7,4.2,1.3,Iris-versicolor | ||
96,5.7,3.0,4.2,1.2,Iris-versicolor | ||
97,5.7,2.9,4.2,1.3,Iris-versicolor | ||
98,6.2,2.9,4.3,1.3,Iris-versicolor | ||
99,5.1,2.5,3.0,1.1,Iris-versicolor | ||
100,5.7,2.8,4.1,1.3,Iris-versicolor | ||
101,6.3,3.3,6.0,2.5,Iris-virginica | ||
102,5.8,2.7,5.1,1.9,Iris-virginica | ||
103,7.1,3.0,5.9,2.1,Iris-virginica | ||
104,6.3,2.9,5.6,1.8,Iris-virginica | ||
105,6.5,3.0,5.8,2.2,Iris-virginica | ||
106,7.6,3.0,6.6,2.1,Iris-virginica | ||
107,4.9,2.5,4.5,1.7,Iris-virginica | ||
108,7.3,2.9,6.3,1.8,Iris-virginica | ||
109,6.7,2.5,5.8,1.8,Iris-virginica | ||
110,7.2,3.6,6.1,2.5,Iris-virginica | ||
111,6.5,3.2,5.1,2.0,Iris-virginica | ||
112,6.4,2.7,5.3,1.9,Iris-virginica | ||
113,6.8,3.0,5.5,2.1,Iris-virginica | ||
114,5.7,2.5,5.0,2.0,Iris-virginica | ||
115,5.8,2.8,5.1,2.4,Iris-virginica | ||
116,6.4,3.2,5.3,2.3,Iris-virginica | ||
117,6.5,3.0,5.5,1.8,Iris-virginica | ||
118,7.7,3.8,6.7,2.2,Iris-virginica | ||
119,7.7,2.6,6.9,2.3,Iris-virginica | ||
120,6.0,2.2,5.0,1.5,Iris-virginica | ||
121,6.9,3.2,5.7,2.3,Iris-virginica | ||
122,5.6,2.8,4.9,2.0,Iris-virginica | ||
123,7.7,2.8,6.7,2.0,Iris-virginica | ||
124,6.3,2.7,4.9,1.8,Iris-virginica | ||
125,6.7,3.3,5.7,2.1,Iris-virginica | ||
126,7.2,3.2,6.0,1.8,Iris-virginica | ||
127,6.2,2.8,4.8,1.8,Iris-virginica | ||
128,6.1,3.0,4.9,1.8,Iris-virginica | ||
129,6.4,2.8,5.6,2.1,Iris-virginica | ||
130,7.2,3.0,5.8,1.6,Iris-virginica | ||
131,7.4,2.8,6.1,1.9,Iris-virginica | ||
132,7.9,3.8,6.4,2.0,Iris-virginica | ||
133,6.4,2.8,5.6,2.2,Iris-virginica | ||
134,6.3,2.8,5.1,1.5,Iris-virginica | ||
135,6.1,2.6,5.6,1.4,Iris-virginica | ||
136,7.7,3.0,6.1,2.3,Iris-virginica | ||
137,6.3,3.4,5.6,2.4,Iris-virginica | ||
138,6.4,3.1,5.5,1.8,Iris-virginica | ||
139,6.0,3.0,4.8,1.8,Iris-virginica | ||
140,6.9,3.1,5.4,2.1,Iris-virginica | ||
141,6.7,3.1,5.6,2.4,Iris-virginica | ||
142,6.9,3.1,5.1,2.3,Iris-virginica | ||
143,5.8,2.7,5.1,1.9,Iris-virginica | ||
144,6.8,3.2,5.9,2.3,Iris-virginica | ||
145,6.7,3.3,5.7,2.5,Iris-virginica | ||
146,6.7,3.0,5.2,2.3,Iris-virginica | ||
147,6.3,2.5,5.0,1.9,Iris-virginica | ||
148,6.5,3.0,5.2,2.0,Iris-virginica | ||
149,6.2,3.4,5.4,2.3,Iris-virginica | ||
150,5.9,3.0,5.1,1.8,Iris-virginica |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
/* | ||
Copyright 2024 Hallvard Høyland Lavik | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
*/ | ||
|
||
extern crate csv; | ||
extern crate rand; | ||
|
||
use rand::prelude::SliceRandom; | ||
|
||
use neurons::network; | ||
use neurons::activation::Activation; | ||
use neurons::objective::Objective; | ||
use neurons::optimizer::Optimizer; | ||
|
||
fn data(path: &str) -> (Vec<Vec<f32>>, Vec<Vec<f32>>, Vec<Vec<f32>>, Vec<Vec<f32>>) { | ||
let mut reader = csv::Reader::from_path(path).unwrap(); | ||
|
||
let mut x: Vec<Vec<f32>> = Vec::new(); | ||
let mut y: Vec<Vec<f32>> = Vec::new(); | ||
|
||
reader.records().for_each(|record| { | ||
let record = record.unwrap(); | ||
x.push(vec![ | ||
record.get(1).unwrap().parse::<f32>().unwrap(), | ||
record.get(2).unwrap().parse::<f32>().unwrap(), | ||
record.get(3).unwrap().parse::<f32>().unwrap(), | ||
record.get(4).unwrap().parse::<f32>().unwrap(), | ||
]); | ||
y.push(vec![ | ||
match record.get(5).unwrap() { | ||
"Iris-setosa" => 0.0, | ||
"Iris-versicolor" => 1.0, | ||
"Iris-virginica" => 2.0, | ||
_ => panic!("Unknown class"), | ||
} | ||
]); | ||
}); | ||
|
||
let mut rng = rand::thread_rng(); | ||
let mut indices: Vec<usize> = (0..x.len()).collect(); | ||
indices.shuffle(&mut rng); | ||
|
||
let x: Vec<Vec<f32>> = indices.iter().map(|&i| x[i].clone()).collect(); | ||
let y: Vec<Vec<f32>> = indices.iter().map(|&i| y[i].clone()).collect(); | ||
|
||
let split = (x.len() as f32 * 0.8) as usize; | ||
let x = x.split_at(split); | ||
let y = y.split_at(split); | ||
|
||
let x_train = x.0.to_vec(); | ||
let y_train = y.0.to_vec(); | ||
let x_test = x.1.to_vec(); | ||
let y_test = y.1.to_vec(); | ||
|
||
(x_train, y_train, x_test, y_test) | ||
} | ||
|
||
fn main() { | ||
// Load the iris dataset | ||
let (x_train, y_train, x_test, y_test) = data("./datasets/iris.csv"); | ||
println!("Train data {}x{}: {:?} => {:?}", | ||
x_train[0].len(), x_train.len(), x_train[0], x_train[0]); | ||
println!("Test data {}x{}: {:?} => {:?}", | ||
x_test[0].len(), x_test.len(), x_test[0], x_test[0]); | ||
|
||
// Create the network | ||
let nodes = vec![4, 5, 3, 1]; | ||
let biases = vec![true, true, false]; | ||
let activations = vec![Activation::Sigmoid, Activation::Sigmoid, Activation::Linear]; | ||
let lr = 0.00008f32; | ||
let optimizer = Optimizer::SGD; | ||
let objective = Objective::RMSE; | ||
|
||
let mut net = network::Network::create( | ||
nodes, biases, activations, lr, optimizer, objective | ||
); | ||
|
||
// Train the network | ||
let _epoch_loss = net.train(&x_train, &y_train, 1000); | ||
|
||
// Validate the network | ||
let val_loss = net.validate(&x_test, &y_test); | ||
println!("1. Validation loss: {:?}", val_loss); | ||
|
||
// Use the network | ||
let prediction = net.predict(x_test.get(0).unwrap()); | ||
println!("2. Input: {:?}, Target: {:?}, Output: {:?}", x_test[0], y_test[0], prediction); | ||
|
||
// // Use the network on batch | ||
// let predictions = net.predict_batch(&x_test); | ||
// println!("3. Input: {:?},\n Target: {:?},\n Output: {:?}", | ||
// x_test[..5], y_test[..5], predictions[..5]); | ||
} |