LIT-Former: Linking In-plane and Through-plane Transformers for Simultaneous CT Image Denoising and Deblurring
This is the official implementation of the paper " LIT-Former: Linking In-plane and Through-plane Transformers for Simultaneous CT Image Denoising and Deblurring". The pre-print version can be found in arxiv; the early access version can be found in TMI.
Jan, 2024: initial commit.
The 2016 AAPM-Mayo dataset can be downloaded from: CT Clinical Innovation Center (B30 kernel)
The 2020 AAPM-Mayo dataset can be downloaded from: cancer imaging archive
Mayo2016/
|--train/
|--quarter_lr/
train_quarter_00001.npy
train_quarter_00002.npy
train_quarter_00003.npy
...
|--full_hr/
train_full_00001.npy
train_full_00002.npy
train_full_00003.npy
...
|--test/
|--quarter_1mm
|--full_1mm
- Linux Platform
- torch==1.12.1+cu113 # depends on the CUDA version of your machine
- torchvision==0.13.1+cu113
- Python==3.8.0
- numpy==1.22.3
Training
python train.py --is_train --dataroot (path to dataset) --checkpoints_dir checkpoints(path to save model checkpoint) --name litformer(name of project) --train_batch_size 64 --phase train --is_val --gpu_ids 0,1
Inference & testing
python test.py --is_test --dataroot (path to dataset) --name litformer(name of project) --model_path (path to load model checkpoint) --phase test --test_batch_size 1 --gpu_ids 0
Please refer to options files for more setting.
If you find our work and code helpful, please kindly cite the corresponding paper:
@article{chen2024lit,
title={LIT-Former: Linking in-plane and through-plane transformers for simultaneous CT image denoising and deblurring},
author={Chen, Zhihao and Niu, Chuang and Gao, Qi and Wang, Ge and Shan, Hongming},
journal={IEEE Transactions on Medical Imaging},
year={2024},
publisher={IEEE}
}