python 3.6.9 or above is needed
get the code
git clone https://github.com/haudiobe/XR-Traffic-Model.git
git checkout dev
cd ./XR-Traffic-Model
create a virtual python environment
python3 -m venv ./myvenv
activate the virtual env
Windows/OSX: look up inside the ./myvenv directory for the relevant activation script.
./myvenv/bin/activate
install dependencies the dependencies
(myvenv) pip install -r ./requirements.txt
The input/output filenames are prefixed automatically with user ids. Currently, you must run these commands once per user.
Generate S-Trace from V-Trace for user id #3
(myvenv) python ./xrtm_encoder.py -c ./samples/encoder.cfg.json --user_id 3
outputs :
./samples_results/S-Trace[3].csv
S-Trace file for all buffers./samples_results/S-Trace[3].frames/
directory containing all traces
Generate P-Trace from S-Trace
(myvenv) python ./xrtm_packetizer.py -c ./samples/packetizer.cfg.json --user_id 3
outputs :
./samples_results/P-Trace[3].csv
P-Trace file for all buffers