-
Notifications
You must be signed in to change notification settings - Fork 15
/
worldTare.c
237 lines (190 loc) · 5.92 KB
/
worldTare.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
* Copyright 2017 Hillcrest Laboratories, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License and
* any applicable agreements you may have with Hillcrest Laboratories, Inc.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* World Tare API Implementation.
*/
#include "worldTare.h"
#include <math.h>
#include <stdio.h>
#define PI (3.14159265358)
#define DEG2RAD(x) (x*PI/180.0)
#define ARRAY_LEN(a) (sizeof(a)/sizeof(a[0]))
#define TOL (0.0005)
// ------------------------------------------------------------------------------
// Forward declarations
static float q2yaw(const Quaternion_t *q);
static int yaw2q(float yaw, Quaternion_t *q);
static void qMult(const Quaternion_t *q1, const Quaternion_t *q2, Quaternion_t *qResult);
static bool ut_q_yaw(void);
// ------------------------------------------------------------------------------
// Public API
// Creates a new tare state that, when applied, will result in rotation vector with same heading as qTo
// when applied to a rotation vector with heading of qFrom.
// qFrom and qTo should BOTH be rotation vectors that HAVE been converted with worldTare_apply.
int worldTare_setTareZ(const TareState_t *stateIn,
TareState_t *stateOut,
const Quaternion_t *qFrom,
const Quaternion_t *qTo)
{
float yaw0;
float yaw1;
Quaternion_t ddq;
// Return error if params are bad
if ((stateIn == 0) || (stateOut == 0) || (qFrom == 0)) {
return -1;
}
// Get headings from qTo_, qFrom
if (qTo) {
yaw0 = q2yaw(qTo);
}
else {
yaw0 = 0.0;
}
yaw1 = q2yaw(qFrom);
// Get quaternion that represents heading rotation yaw1 -> yaw2
yaw2q(yaw0-yaw1, &ddq);
// Apply delta to tare state
qMult(&stateIn->q, &ddq, &stateOut->q);
return 0;
}
int worldTare_clear(TareState_t *state)
{
if (state == 0) return -1;
state->q.w = 1.0;
state->q.x = 0.0;
state->q.y = 0.0;
state->q.z = 0.0;
return 0;
}
// Apply a world tare transformation on a rotation vector, qIn, resulting in
// an adjusted rotation vector, qOut.
int worldTare_apply(const TareState_t *state,
const Quaternion_t *qIn,
Quaternion_t *qOut)
{
if ((state == 0) || (qIn == 0) || (qOut == 0)) return -1;
qMult(&state->q, qIn, qOut);
return 0;
}
bool worldTare_unitTest(void)
{
bool status = true;
status &= ut_q_yaw();
return status;
}
// ------------------------------------------------------------------------------
// Utility functions
static bool inToleranceRad(float a, float b)
{
float diff = b - a;
if (diff > PI) diff -= 2.0*PI;
if (diff < -PI) diff += 2.0*PI;
if ((diff > TOL) || (diff < -TOL)) {
return false;
}
return true;
}
static bool inTolerance(float a, float b)
{
float diff = b - a;
if ((diff > TOL) || (diff < -TOL)) {
return false;
}
return true;
}
static bool ut_q_yaw(void)
{
bool status = true;
typedef struct {
Quaternion_t qENU;
float yaw;
} TestPair_t;
static const TestPair_t test[] = {
// qENU[wxyz] , yaw
{{0.0000, 0.0000, 0.0000, 1.0000}, DEG2RAD(-180)},
{{0.2588, 0.0000, 0.0000, 0.9659}, DEG2RAD(-150)},
{{0.5000, 0.0000, 0.0000, 0.8660}, DEG2RAD(-120)},
{{0.7071, 0.0000, 0.0000, 0.7071}, DEG2RAD( -90)},
{{0.8660, 0.0000, 0.0000, 0.5000}, DEG2RAD( -60)},
{{0.9659, 0.0000, 0.0000, 0.2588}, DEG2RAD( -30)},
{{1.0000, 0.0000, 0.0000, -0.0000}, DEG2RAD( 0)},
{{0.9659, 0.0000, 0.0000, -0.2588}, DEG2RAD( 30)},
{{0.8660, 0.0000, 0.0000, -0.5000}, DEG2RAD( 60)},
{{0.7071, 0.0000, 0.0000, -0.7071}, DEG2RAD( 90)},
{{0.5000, 0.0000, 0.0000, -0.8660}, DEG2RAD( 120)},
{{0.2588, 0.0000, 0.0000, -0.9659}, DEG2RAD( 150)},
{{0.0000, 0.0000, 0.0000, -1.0000}, DEG2RAD( 180)},
};
for (int n = 0; n < ARRAY_LEN(test); n++) {
float yaw;
Quaternion_t q;
yaw = q2yaw(&test[n].qENU);
yaw2q(test[n].yaw, &q);
if (!inToleranceRad(yaw, test[n].yaw) ||
!inTolerance(q.w, test[n].qENU.w) ||
!inTolerance(q.x, test[n].qENU.x) ||
!inTolerance(q.y, test[n].qENU.y) ||
!inTolerance(q.z, test[n].qENU.z)) {
status = false;
}
}
return status;
}
static float q2yaw(const Quaternion_t *q)
{
float num;
float den;
float yaw;
// num = 2*y*x - 2*w*z
num = 2.0 * q->y * q->x - 2.0 * q->w * q->z;
// den = 2*w*w + 2*y*y - 1
den = 2.0 * q->w * q->w + 2.0 * q->y * q->y - 1.0;
yaw = atan2(num, den);
return yaw;
}
static int yaw2q(float yaw, Quaternion_t *q)
{
if (q == 0) return -1;
q->w = cos(0.5 * yaw);
q->x = 0.0;
q->y = 0.0;
q->z = -sin(0.5 * yaw);
return 0;
}
static void qMult(const Quaternion_t *q1, const Quaternion_t *q2, Quaternion_t *qResult)
{
qResult->w =
q1->w * q2->w
- q1->x * q2->x
- q1->y * q2->y
- q1->z * q2->z;
qResult->x =
q1->w * q2->x
+ q1->x * q2->w
+ q1->y * q2->z
- q1->z * q2->y;
qResult->y =
q1->w * q2->y
- q1->x * q2->z
+ q1->y * q2->w
+ q1->z * q2->x;
qResult->z =
q1->w * q2->z
+ q1->x * q2->y
- q1->y * q2->x
+ q1->z * q2->w;
}