Skip to content

Commit

Permalink
Extract the iSL decision procedure to OCaml
Browse files Browse the repository at this point in the history
Decision procedure: name cleanup
  • Loading branch information
hferee committed Sep 3, 2024
1 parent e7c60c9 commit 2d9d210
Show file tree
Hide file tree
Showing 4 changed files with 329 additions and 5 deletions.
4 changes: 2 additions & 2 deletions bin/dune
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
(executables
(public_names uiml_demo benchmark uiml_cmdline)
(names uiml_demo benchmark uiml_cmdline)
(public_names uiml_demo benchmark uiml_cmdline isl_dec)
(names uiml_demo benchmark uiml_cmdline isl_dec)
(modes js native)
(preprocess (pps js_of_ocaml-ppx))
(libraries js_of_ocaml UIML angstrom exenum)
Expand Down
27 changes: 27 additions & 0 deletions bin/isl_dec.ml
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
open Exenum
open Printer
open UIML.Formulas
open Sys
open Char
open UIML.DecisionProcedure
open UIML.Datatypes
open Stringconversion
open Modal_expressions_parser



let nb_args = Array.length Sys.argv

let form = if nb_args = 2 then (Sys.argv.(1)) else "T"

let usage_string =
"isl_dec φ: decides the provability of the modal formula φ in iSL.\n"

let print_decision = function
| Coq_inl _ -> "Probable"
| _ -> "Not provable"

let () =
if nb_args = 2 then form |> eval |> coq_Provable_dec [] |>
print_decision |> print_string |> print_newline
else print_string usage_string
4 changes: 2 additions & 2 deletions theories/extraction/UIML_extraction.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Require Import ExtrOcamlBasic ExtrOcamlString.

Require Import K.Interpolation.UIK_braga.
Require Import KS_export.
Require Import ISL.PropQuantifiers.
Require Import ISL.PropQuantifiers ISL.DecisionProcedure.

Require Import ISL.Simp.

Expand Down Expand Up @@ -41,5 +41,5 @@ Definition isl_simplified_A v f := A_simplified v f.

Set Extraction Output Directory "extraction".

Separate Extraction gl_UI k_UI isl_E isl_A isl_simplified_E isl_simplified_A Formulas.weight isl_simp.
Separate Extraction Provable_dec gl_UI k_UI isl_E isl_A isl_simplified_E isl_simplified_A Formulas.weight isl_simp.

299 changes: 298 additions & 1 deletion theories/iSL/DecisionProcedure.v
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,8 @@ induction l as [|x l].
* right. simpl. intros z [Hz|Hz]; subst; try rewrite Heq; auto with *.
Defined.

Proposition Provable_dec Γ φ :
(* This function computes a proof tree of a sequent, if there is one, or produces a proof that there is none *)
Proposition Proof_tree_dec Γ φ :
{_ : list_to_set_disj Γ ⊢ φ & True} + {forall H : list_to_set_disj Γ ⊢ φ, False}.
Proof.
(* duplicate *)
Expand Down Expand Up @@ -319,3 +320,299 @@ intro Hp. inversion Hp; subst; try eqt; eauto 2.
+ now rw (proper_open_boxes _ _ Heq) 2.
+ now rw Heq 1.
Defined.


(* This function decides whether a sequent is provable *)
Proposition Provable_dec Γ φ :
(exists _ : list_to_set_disj Γ ⊢ φ, True) + (forall H : list_to_set_disj Γ ⊢ φ, False).
Proof.
remember (Γ, φ) as pe.
replace Γ with pe.1 by now inversion Heqpe.
replace φ with pe.2 by now inversion Heqpe. clear Heqpe Γ φ.
revert pe.
refine (@well_founded_induction _ _ wf_pointed_order _ _).
intros (Γ& φ) Hind; simpl.
assert(Hind' := λ Γ' φ', Hind(Γ', φ')). simpl in Hind'. clear Hind. rename Hind' into Hind.

case (decide (⊥ ∈ Γ)); intro Hbot.
{ left. eexists; trivial. apply elem_of_list_to_set_disj in Hbot. exhibit Hbot 0. apply ExFalso. }
assert(HAndR : {φ1 & {φ2 & φ = (And φ1 φ2)}} + {∀ φ1 φ2, φ ≠ (And φ1 φ2)}) by (destruct φ; eauto).
destruct HAndR as [(φ1 & φ2 & Heq) | HAndR].
{ subst.
destruct (Hind Γ φ1) as [Hp1| H1]. order_tac.
- destruct (Hind Γ φ2) as [Hp2| H2]. order_tac.
+ left. destruct Hp1, Hp2. eexists; trivial. apply AndR; assumption.
+ right. intro Hp. apply AndR_rev in Hp. tauto.
- right. intro Hp. apply AndR_rev in Hp. tauto.
}
assert(Hvar : {p & φ = Var p & Var p ∈ Γ} + {∀ p, φ = Var p -> Var p ∈ Γ -> False}). {
destruct φ. 2-6: right; auto with *.
case (decide (Var v ∈ Γ)); intro Hin.
- left. exists v; trivial.
- right; auto with *. }
destruct Hvar as [[p Heq Hp]|Hvar].
{ subst. left. eexists; trivial. apply elem_of_list_to_set_disj in Hp. exhibit Hp 0. apply Atom. }
assert(HAndL : {ψ1 & {ψ2 & (And ψ1 ψ2) ∈ Γ}} + {∀ ψ1 ψ2, (And ψ1 ψ2) ∈ Γ -> False}). {
pose (fA := (fun θ => match θ with |And _ _ => true | _ => false end)).
destruct (exists_dec fA Γ) as [(θ & Hin & Hθ) | Hf].
- left. subst fA. destruct θ. 3: { eexists. eexists. apply elem_of_list_In. eauto. }
all: auto with *.
- right. intros ψ1 ψ2 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fA. simpl in Hψ. tauto.
}
destruct HAndL as [(ψ1 & ψ2 & Hin)|HAndL].
{ destruct (Hind (ψ1 :: ψ2 :: rm (And ψ1 ψ2) Γ) φ) as [Hp' | Hf]. order_tac.
- left. destruct Hp' as [Hp' _]. eexists; trivial. apply elem_of_list_to_set_disj in Hin.
exhibit Hin 0.
rewrite (proper_Provable _ _ (equiv_disj_union_compat_r (list_to_set_disj_rm _ _)) _ _ eq_refl).
apply AndL. peapply Hp'.
- right. intro Hf'. apply Hf.
rw (symmetry (list_to_set_disj_env_add (ψ2 :: rm (And ψ1 ψ2) Γ) ψ1)) 0.
rw (symmetry (list_to_set_disj_env_add (rm (And ψ1 ψ2) Γ) ψ2)) 1.
exch 0. apply AndL_rev.
rw (symmetry (list_to_set_disj_rm Γ(And ψ1 ψ2))) 1.
apply elem_of_list_to_set_disj in Hin.
pose (difference_singleton (list_to_set_disj Γ) (And ψ1 ψ2)).
peapply Hf'.
}
assert(HImpR : {φ1 & {φ2 & φ = (Implies φ1 φ2)}} + {∀ φ1 φ2, φ ≠ (Implies φ1 φ2)}) by (destruct φ; eauto).
destruct HImpR as [(φ1 & φ2 & Heq) | HImpR].
{ subst.
destruct (Hind (φ1 :: Γ) φ2) as [Hp1| H1]. order_tac.
- left. destruct Hp1 as [Hp1 _]. eexists; trivial. apply ImpR. peapply Hp1.
- right. intro Hf. apply H1. apply ImpR_rev in Hf. peapply Hf.
}
assert(HOrL : {ψ1 & {ψ2 & (Or ψ1 ψ2) ∈ Γ}} + {∀ ψ1 ψ2, (Or ψ1 ψ2) ∈ Γ -> False}). {
pose (fA := (fun θ => match θ with |Or _ _ => true | _ => false end)).
destruct (exists_dec fA Γ) as [(θ & Hin & Hθ) | Hf].
- left. subst fA. destruct θ. 4: { eexists. eexists. apply elem_of_list_In. eauto. }
all: auto with *.
- right. intros ψ1 ψ2 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fA. simpl in Hψ. tauto.
}
destruct HOrL as [(ψ1 & ψ2 & Hin)|HOrL].
{ apply elem_of_list_to_set_disj in Hin.
destruct (Hind (ψ1 :: rm (Or ψ1 ψ2) Γ) φ) as [Hp1| Hf]. order_tac.
- destruct (Hind (ψ2 :: rm (Or ψ1 ψ2) Γ) φ) as [Hp2| Hf]. order_tac.
+ left. destruct Hp1 as [Hp1 _]. destruct Hp2 as [Hp2 _]. eexists; trivial. exhibit Hin 0.
rewrite (proper_Provable _ _ (equiv_disj_union_compat_r (list_to_set_disj_rm _ _)) _ _ eq_refl).
apply OrL. peapply Hp1. peapply Hp2.
+ right; intro Hf'. assert(Hf'' :list_to_set_disj (rm (Or ψ1 ψ2) Γ) • Or ψ1 ψ2 ⊢ φ). {
rw (symmetry (list_to_set_disj_rm Γ(Or ψ1 ψ2))) 1.
pose (difference_singleton (list_to_set_disj Γ) (Or ψ1 ψ2)). peapply Hf'.
}
apply OrL_rev in Hf''. apply Hf. peapply Hf''.
- right; intro Hf'. assert(Hf'' :list_to_set_disj (rm (Or ψ1 ψ2) Γ) • Or ψ1 ψ2 ⊢ φ). {
rw (symmetry (list_to_set_disj_rm Γ(Or ψ1 ψ2))) 1.
pose (difference_singleton (list_to_set_disj Γ) (Or ψ1 ψ2)). peapply Hf'.
}
apply OrL_rev in Hf''. apply Hf. peapply Hf''.1.
}
assert(HImpLVar : {p & {ψ & Var p ∈ Γ /\ (Implies (Var p) ψ) ∈ Γ}} +
{∀ p ψ, Var p ∈ Γ -> (Implies (Var p) ψ) ∈ Γ -> False}). {
pose (fIp :=λ p θ, match θ with | Implies (Var q) _ => if decide (p = q) then true else false | _ => false end).
pose (fp:= (fun θ => match θ with |Var p => if (exists_dec (fIp p) Γ) then true else false | _ => false end)).
destruct (exists_dec fp Γ) as [(θ & Hin & Hθ) | Hf].
- left. subst fp. destruct θ. 2-6: auto with *.
case exists_dec as [(ψ &Hinψ & Hψ)|] in Hθ; [|auto with *].
unfold fIp in Hψ. destruct ψ. 1-4, 6: auto with *.
destruct ψ1. 2-6: auto with *. case decide in Hψ; [|auto with *].
subst. apply elem_of_list_In in Hinψ, Hin.
do 2 eexists. split; eauto.
- right. intros p ψ Hp Hψ. rewrite elem_of_list_In in Hp, Hψ. apply Hf in Hp. subst fp fIp.
simpl in Hp. case exists_dec as [|Hf'] in Hp. auto with *.
apply (Hf' _ Hψ). rewrite decide_True; trivial. auto with *.
}
destruct HImpLVar as [[p [ψ [Hinp Hinψ]]]|HImpLVar].
{ apply elem_of_list_to_set_disj in Hinp.
apply elem_of_list_to_set_disj in Hinψ.
assert(Hinp' : Var p ∈ (list_to_set_disj Γ ∖ {[Implies p ψ]} : env))
by (apply in_difference; [discriminate| assumption]).
destruct (Hind (ψ :: rm (Implies (Var p) ψ) Γ) φ) as [Hp|Hf]. order_tac.
- left. destruct Hp as [Hp _]. eexists; trivial. exhibit Hinψ 0.
exhibit Hinp' 1. apply ImpLVar.
rw (symmetry (difference_singleton (list_to_set_disj Γ ∖ {[Implies p ψ]}) (Var p) Hinp')) 1.
rw (list_to_set_disj_rm Γ(Implies p ψ)) 1. l_tac. exact Hp.
- right. intro Hf'. apply Hf.
rw (symmetry (list_to_set_disj_env_add (rm (Implies p ψ) Γ) ψ)) 0.
rw (symmetry (list_to_set_disj_rm Γ(Implies p ψ))) 1.
exhibit Hinp' 1. apply ImpLVar_rev.
rw (symmetry (difference_singleton _ _ Hinp')) 1.
rw (symmetry (difference_singleton _ _ Hinψ)) 0.
exact Hf'.
}
assert(HImpLAnd : {φ1 & {φ2 & {φ3 & (Implies (And φ1 φ2) φ3) ∈ Γ}}} +
{∀ φ1 φ2 φ3, (Implies (And φ1 φ2) φ3) ∈ Γ -> False}). {
pose (fII := (fun θ => match θ with |Implies (And _ _) _ => true | _ => false end)).
destruct (exists_dec fII Γ) as [(θ & Hin & Hθ) | Hf].
- left. subst fII. destruct θ. 1-4, 6: auto with *.
destruct θ1. 1-2,4-6: auto with *. do 3 eexists; apply elem_of_list_In; eauto.
- right. intros ψ1 ψ2 ψ3 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fII. simpl in Hψ. tauto.
}
destruct HImpLAnd as [(φ1&φ2&φ3&Hin)|HImpLAnd].
{ apply elem_of_list_to_set_disj in Hin.
destruct (Hind (Implies φ1 (Implies φ2 φ3) :: rm (Implies (And φ1 φ2) φ3) Γ) φ) as [Hp|Hf]. order_tac.
- left. destruct Hp as [Hp _]. eexists; trivial. exhibit Hin 0. apply ImpLAnd.
rw (list_to_set_disj_rm Γ(Implies (And φ1 φ2) φ3)) 1. l_tac. exact Hp.
- right. intro Hf'. apply Hf.
rw (symmetry (list_to_set_disj_env_add (rm (Implies (And φ1 φ2) φ3) Γ) (Implies φ1 (Implies φ2 φ3)))) 0.
rw (symmetry (list_to_set_disj_rm Γ(Implies (And φ1 φ2) φ3))) 1.
apply ImpLAnd_rev.
rw (symmetry (difference_singleton _ _ Hin)) 0. exact Hf'.
}
assert(HImpLOr : {φ1 & {φ2 & {φ3 & (Implies (Or φ1 φ2) φ3) ∈ Γ}}} +
{∀ φ1 φ2 φ3, (Implies (Or φ1 φ2) φ3) ∈ Γ -> False}). {
pose (fII := (fun θ => match θ with |Implies (Or _ _) _ => true | _ => false end)).
destruct (exists_dec fII Γ) as [(θ & Hin & Hθ) | Hf].
- left. subst fII. destruct θ. 1-4, 6: auto with *.
destruct θ1. 1-3, 5-6: auto with *. do 3 eexists; apply elem_of_list_In; eauto.
- right. intros ψ1 ψ2 ψ3 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fII. simpl in Hψ. tauto.
}
destruct HImpLOr as [(φ1&φ2&φ3&Hin)|HImpLOr].
{ apply elem_of_list_to_set_disj in Hin.
destruct (Hind (Implies φ2 φ3 :: Implies φ1 φ3 :: rm (Implies (Or φ1 φ2) φ3) Γ) φ) as [Hp|Hf]. order_tac.
- left. destruct Hp as [Hp _]. eexists; trivial. exhibit Hin 0. apply ImpLOr.
rw (list_to_set_disj_rm Γ(Implies (Or φ1 φ2) φ3)) 2. do 2 l_tac. exact Hp.
- right. intro Hf'. apply Hf.
rw (symmetry (list_to_set_disj_env_add ( Implies φ1 φ3 :: rm (Implies (Or φ1 φ2) φ3) Γ) (Implies φ2 φ3))) 0.
rw (symmetry (list_to_set_disj_env_add (rm (Implies (Or φ1 φ2) φ3) Γ) (Implies φ1 φ3))) 1.
rw (symmetry (list_to_set_disj_rm Γ(Implies (Or φ1 φ2) φ3))) 2.
apply ImpLOr_rev.
rw (symmetry (difference_singleton _ _ Hin)) 0. exact Hf'.
}
(* non invertible right rules *)
assert(HOrR1 : {φ1 & {φ2 & (exists (_ : list_to_set_disj Γ ⊢ φ1), φ = (Or φ1 φ2))}} +
{∀ φ1 φ2, ∀ (H : list_to_set_disj Γ ⊢ φ1), φ = (Or φ1 φ2) -> False}).
{
destruct φ. 4: { destruct (Hind Γ φ1)as [Hp|Hf]. order_tac.
- left. do 2 eexists. destruct Hp as [Hp _]. eexists; eauto.
- right. intros ? ? Hp Heq. inversion Heq. subst. tauto.
}
all: right; auto with *.
}
destruct HOrR1 as [(φ1 & φ2 & Hp)| HOrR1].
{ left. destruct Hp as (Hp & Heq). subst. eexists; trivial. apply OrR1, Hp. }
assert(HOrR2 : {φ1 & {φ2 & exists (_ : list_to_set_disj Γ ⊢ φ2), φ = (Or φ1 φ2)}} +
{∀ φ1 φ2, ∀ (H : list_to_set_disj Γ ⊢ φ2), φ = (Or φ1 φ2) -> False}).
{
destruct φ. 4: { destruct (Hind Γ φ2)as [Hp|Hf]. order_tac.
- left. do 2 eexists. destruct Hp as [Hp _]; eauto.
- right. intros ? ? Hp Heq. inversion Heq. subst. tauto.
}
all: right; auto with *.
}
destruct HOrR2 as [(φ1 & φ2 & Hp)| HOrR2 ].
{ left. destruct Hp as [Hp Heq]. subst. eexists; trivial. apply OrR2, Hp. }
assert(HBoxR : {φ' & exists (_ : (⊗ (list_to_set_disj Γ) • □ φ' ⊢ φ')), φ = (□ φ')} +
{∀ φ', ∀ (H : ⊗ (list_to_set_disj Γ) • □ φ' ⊢ φ'), φ = (□ φ') -> False}).
{
destruct φ. 6: { destruct (Hind ((□ φ) :: map open_box Γ) φ)as [Hp|Hf]. order_tac.
- left. eexists. destruct Hp as [Hp _]. eexists; eauto. l_tac. exact Hp.
- right. intros ? Hp Heq. inversion Heq. subst. apply Hf.
rw (symmetry (list_to_set_disj_env_add (map open_box Γ) (□ φ'))) 0.
rewrite <- list_to_set_disj_open_boxes. exact Hp.
}
all: right; auto with *.
}
destruct HBoxR as [(φ' & Hp)| HBoxR ].
{ left. destruct Hp as [Hp Heq]. subst. eexists; trivial. apply BoxR, Hp. }
assert(Hempty: ∀ (Δ : env) φ,((Δ • φ) = ∅) -> False).
{
intros Δ θ Heq. assert (Hm:= multiplicity_empty θ).
unfold base.empty in *.
rewrite <- Heq, union_mult, singleton_mult_in in Hm by trivial. lia.
}
(* non invertible left rules *)
assert(HImpLImp : ∀Γ2 Γ1, Γ1 ++ Γ2 = Γ -> {φ1 & {φ2 & {φ3 & exists (_ : (list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • (Implies φ2 φ3)) ⊢ (Implies φ1 φ2)),
exists (_: list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • φ3 ⊢ φ), (Implies (Implies φ1 φ2) φ3) ∈ Γ2}}} +
{∀ φ1 φ2 φ3 (_ : (list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • (Implies φ2 φ3)) ⊢ (Implies φ1 φ2))
(_: list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • φ3 ⊢ φ),
Implies (Implies φ1 φ2) φ3 ∈ Γ2 → False}).
{
induction Γ2 as [|θ Γ2]; intros Γ1 Heq.
- right. intros φ1 φ2 φ3 _ _ Hin. inversion Hin.
- assert(Heq' : (Γ1 ++ [θ]) ++ Γ2 = Γ) by (subst; auto with *).
destruct (IHΓ2 (Γ1 ++ [θ]) Heq') as [(φ1 & φ2 & φ3 & Hp)|Hf].
+ left. do 3 eexists. destruct Hp as ( Hp1 & Hp2 & Hin). do 2 (eexists; eauto). now right.
+ destruct θ.
5: destruct θ1.
9 : {
destruct (Hind (Implies θ1_2 θ2 :: rm (Implies (Implies θ1_1 θ1_2) θ2) Γ) (Implies θ1_1 θ1_2))
as [Hp1| Hf'].
- order_tac. rewrite <- Permutation_middle. unfold rm.
destruct form_eq_dec; [|tauto]. order_tac.
- destruct (Hind (θ2 :: rm (Implies (Implies θ1_1 θ1_2) θ2) Γ) φ) as [Hp2| Hf''].
+ order_tac. rewrite <- Permutation_middle. unfold rm.
destruct form_eq_dec; [|tauto]. order_tac.
+ left. do 3 eexists. destruct Hp1 as [Hp1 _]. destruct Hp2 as [Hp2 _].
eexists; try l_tac; eauto. ms.
+ right; intros φ1 φ2 φ3 Hp1' Hp2 He; apply elem_of_list_In in He;
destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto].
inversion Heq''. subst. apply Hf''. peapply Hp2.
- right; intros φ1 φ2 φ3 Hp1 Hp2 He; apply elem_of_list_In in He;
destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto].
inversion Heq''. subst. apply Hf'. peapply Hp1.
}
all: (right; intros φ1 φ2 φ3 Hp1 Hp2 He; apply elem_of_list_In in He; destruct He as [Heq''| Hin];
[discriminate|apply elem_of_list_In in Hin; eapply Hf; eauto]).
}
destruct (HImpLImp Γ [] (app_nil_l _)) as [(φ1 & φ2 & φ3 & Hp1)|HfImpl].
{ left. destruct Hp1 as (Hp1 & Hp2 & Hin). eexists; trivial.
apply elem_of_list_to_set_disj in Hin. exhibit Hin 0.
rw (list_to_set_disj_rm Γ(Implies (Implies φ1 φ2) φ3)) 1.
apply ImpLImp; assumption.
}
(* ImpBox *)
assert(HImpLBox : ∀Γ2 Γ1, Γ1 ++ Γ2 = Γ -> {φ1 & {φ2 & exists (_ : (⊗(list_to_set_disj ((rm (Implies (□ φ1) φ2) Γ))) • □ φ1 • φ2) ⊢φ1),
exists (_ : list_to_set_disj (rm (Implies (□ φ1) φ2) Γ) • φ2 ⊢ φ),
(Implies (□ φ1) φ2) ∈ Γ2}} +
{∀ φ1 φ2 (_ : ((⊗ (list_to_set_disj ((rm (Implies (□ φ1) φ2) Γ))) • □ φ1 • φ2) ⊢φ1))
(_: list_to_set_disj (rm (Implies (□ φ1) φ2) Γ) • φ2 ⊢ φ),
Implies (□ φ1) φ2 ∈ Γ2 → False}).
{
induction Γ2 as [|θ Γ2]; intros Γ1 Heq.
- right. intros φ1 φ2 _ _ Hin. inversion Hin.
- assert(Heq' : (Γ1 ++ [θ]) ++ Γ2 = Γ) by (subst; auto with *).
destruct (IHΓ2 (Γ1 ++ [θ]) Heq') as [(φ1 & φ2 & Hp1)|Hf].
+ left. do 2 eexists. destruct Hp1 as (Hp1 & Hp2 & Hin). do 2 (eexists; eauto). now right.
+ destruct θ.
5: destruct θ1.
10 : {
destruct (Hind (θ2 :: (□θ1) :: map open_box (rm (Implies (□ θ1) θ2) Γ)) θ1)
as [Hp1|Hf'].
- order_tac. rewrite <- Permutation_middle. unfold rm.
destruct form_eq_dec; [|tauto]. order_tac.
- destruct (Hind (θ2 :: rm (Implies (□ θ1) θ2) Γ) φ) as [Hp2| Hf''].
+ order_tac. rewrite <- Permutation_middle. unfold rm.
destruct form_eq_dec; [|tauto]. order_tac.
+ left. do 2 eexists. destruct Hp1 as [Hp1 _]. destruct Hp2 as [Hp2 _].
repeat eexists; repeat l_tac; eauto. ms.
+ right; intros φ1 φ2 Hp1' Hp2 He; apply elem_of_list_In in He;
destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto].
inversion Heq''. subst. apply Hf''. peapply Hp2.
- right; intros φ1 φ2 Hp1 Hp2 He; apply elem_of_list_In in He;
destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto].
inversion Heq''. subst. apply Hf'.
(erewrite proper_Provable; [| |reflexivity]); [eapply Hp1|].
repeat rewrite <- ?list_to_set_disj_env_add, list_to_set_disj_open_boxes. trivial.
}
all: (right; intros φ1 φ2 Hp1 Hp2 He; apply elem_of_list_In in He; destruct He as [Heq''| Hin];
[discriminate|apply elem_of_list_In in Hin; eapply Hf; eauto]).
}
destruct (HImpLBox Γ [] (app_nil_l _)) as [(φ1 & φ2 & Hp1)|HfImpLBox].
{ left. destruct Hp1 as (Hp1 & Hp2 & Hin). eexists; trivial.
apply elem_of_list_to_set_disj in Hin. exhibit Hin 0.
rw (list_to_set_disj_rm Γ(Implies (□ φ1) φ2)) 1.
apply ImpBox; assumption.
}
clear Hind HImpLImp HImpLBox.
right.
intro Hp. inversion Hp; subst; try eqt; eauto 2.
- eapply HAndR; eauto.
- eapply HImpR; eauto.
- eapply HImpLVar; eauto. apply elem_of_list_to_set_disj. setoid_rewrite <- H; ms.
- eapply HfImpl; eauto.
+ now rw Heq 1.
+ now rw Heq 1.
- eapply HfImpLBox; eauto.
+ now rw (proper_open_boxes _ _ Heq) 2.
+ now rw Heq 1.
Defined.

0 comments on commit 2d9d210

Please sign in to comment.