Skip to content

Commit

Permalink
Done simplifying Δ in E(Δ) and A(Δ, φ)
Browse files Browse the repository at this point in the history
  • Loading branch information
hferee committed Sep 11, 2024
1 parent b218377 commit 9cd5481
Show file tree
Hide file tree
Showing 6 changed files with 237 additions and 380 deletions.
2 changes: 1 addition & 1 deletion theories/extraction/UIML_extraction.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Require Import ExtrOcamlBasic ExtrOcamlString.

Require Import K.Interpolation.UIK_braga.
Require Import KS_export.
Require Import ISL.InvPropQuantifiers ISL.DecisionProcedure ISL.Simp.
Require Import ISL.PropQuantifiers ISL.DecisionProcedure ISL.Simp.


Fixpoint MPropF_of_form (f : Formulas.form) : MPropF :=
Expand Down
334 changes: 0 additions & 334 deletions theories/iSL/InvPropQuantifiers.v

This file was deleted.

22 changes: 20 additions & 2 deletions theories/iSL/Order.v
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,14 @@ Definition env_order_refl Δ Δ' := (env_weight Δ) ≤(env_weight Δ').

Global Notation "Δ ≼ Δ'" := (env_order_refl Δ Δ') (at level 150).

Lemma env_order_env_order_refl Δ Δ' : env_order Δ Δ' -> env_order_refl Δ Δ'.
Proof. unfold env_order, env_order_refl, ltof. lia. Qed.

Global Hint Resolve env_order_env_order_refl: order.

Lemma env_order_self Δ : Δ ≼ Δ.
Proof. unfold env_order_refl. trivial. Qed.

Global Instance Proper_env_weight: Proper ((≡ₚ) ==> (=)) env_weight.
Proof.
intros Γ Δ Heq. unfold env_weight. now rewrite Heq.
Expand Down Expand Up @@ -396,12 +404,22 @@ Hint Extern 5 (?a ≺· ?b) => order_tac : proof.

Lemma pointed_env_order_bot_R pe Δ φ: (pe ≺· (Δ, ⊥)) -> pe ≺· (Δ, φ).
Proof.
Admitted.
intro Hlt. destruct pe as (Γ, ψ). unfold pointed_env_order. simpl.
eapply env_order_lt_le_trans. exact Hlt. simpl.
unfold env_order_refl. repeat rewrite env_weight_add.
assert(Hle: weight ⊥ ≤ weight φ) by (destruct φ; simpl; lia).
apply Nat.pow_le_mono_r with (a := 5) in Hle; lia.
Qed.

Hint Resolve pointed_env_order_bot_R : order.

Lemma pointed_env_order_bot_L pe Δ φ: ((Δ, φ) ≺· pe) -> (Δ, ⊥) ≺· pe.
Proof.
Admitted.
intro Hlt. destruct pe as (Γ, ψ). unfold pointed_env_order. simpl.
eapply env_order_le_lt_trans; [|exact Hlt]. simpl.
unfold env_order_refl. repeat rewrite env_weight_add.
assert(Hle: weight ⊥ ≤ weight φ) by (destruct φ; simpl; lia).
apply Nat.pow_le_mono_r with (a := 5) in Hle; lia.
Qed.

Hint Resolve pointed_env_order_bot_L : order.
Loading

0 comments on commit 9cd5481

Please sign in to comment.