forked from ninetailskim/yolov5_for_rknn
-
Notifications
You must be signed in to change notification settings - Fork 2
/
onnx_to_rknn.py
53 lines (46 loc) · 1.67 KB
/
onnx_to_rknn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import urllib
import traceback
import time
import sys
import numpy as np
import cv2
from rknn.api import RKNN
""""
将onnx模型转换为rknn模型
"""
if __name__ == '__main__':
ONNX_MODEL = 'yolov5m_416x416.onnx'
RKNN_MODEL = 'yolov5m_416x416.rknn'
# Create RKNN object
rknn = RKNN()
print('--> config model')
# rknn.config(mean_values=[[123.675, 116.28, 103.53]], std_values=[[58.82, 58.82, 58.82]], reorder_channel='0 1 2')
# rknn.config(batch_size=1,target_platform=["rk1806", "rk1808", "rk3399pro"], mean_values='0 0 0 255')
rknn.config(channel_mean_value='0 0 0 255', reorder_channel='0 1 2', batch_size=1)
# rknn.config(channel_mean_value='0 0 0 1', reorder_channel='0 1 2', batch_size=1)
# rknn.config(mean_values=[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], std_values=[[255.0, 255.0, 255.0, 255.0, 255.0, 255.0, 255.0, 255.0, 255.0, 255.0, 255.0, 255.0]], reorder_channel='0 1 2', batch_size=1)
print('done')
# Load tensorflow model
print('--> Loading model')
ret = rknn.load_onnx(model=ONNX_MODEL)
if ret != 0:
print('Load resnet50v2 failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt') # pre_compile=True
# ret = rknn.build(do_quantization=True) # pre_compile=True
if ret != 0:
print('Build resnet50 failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export RKNN model')
ret = rknn.export_rknn(RKNN_MODEL)
if ret != 0:
print('Export resnet50v2.rknn failed!')
exit(ret)
print('done')
rknn.release()