Program author: Hideki Kaneko
Original paper: Holistically-Nested Edge Detection
Generate file lists before starting training process.
python make_train_data_list.py \
--rootdir ./path/to/dir \
--dst ./train.lst \
Run command below to start training. Please set correct paths for your environment.
python train.py \
--expname test1\
--train_list_path ./train.lst \
--train_dir ./path/to/dir \
--test_list_path ./test.lst \
--test_dir ./path/to/dir \
--lr 0.01\
--momentum 0.9\
--batch_size 10\
--n_epochs 10000\
--model_path hed.model\
--resume
For every epoch, this script update and save parameters as "hed.model".
For every 10 epochs, parameters will be saved under ./checkpoint .
Generate segmention images with trained model.
python infer.py \
--model hed.model \
--list test_pair.lst \
--dir ./path/to/dir \
--dst pred
Evaluate the performance of generated images. ODS(optimal dataset scale) and AP(average precision) will be calculated.
python ecaluate.py \
--preddir pred \
--truedir ./path/to/dir \
--dst results