Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Some CuBLAS benchmarking results on RTX2080 TI (all measurements are median latencies): SECTION 1 FP32 Matrix Multiply: C (bs x m x n) = A (bs x m x k) @ B(bs x k x n) Group 1 results with m = 512, n = 512, k = 512 bs = 1: cublas_batched_gemm 69.0us cublas_strided_gemm 41.0us hidet.ops.matmul optimized 37.0us PyTorch 44.6us bs = 2: cublas_batched_gemm 111.7us cublas_strided_gemm 75.8us hidet.ops.matmul optimized 69.2us PyTorch 71.7us bs = 4: cublas_batched_gemm 124.9us cublas_strided_gemm 97.2us hidet.ops.matmul optimized 100.8us PyTorch 96.3us bs = 8: cublas_batched_gemm 190.5us cublas_strided_gemm 191.1us hidet.ops.matmul optimized 204.7us PyTorch 187.6us Group 2 results with m = 1024, n = 1024, k = 2048 bs = 1: cublas_batched_gemm 405.1us cublas_strided_gemm 419.2us hidet.ops.matmul optimized 370.7us PyTorch 405.1us bs = 2: cublas_batched_gemm 725.3us cublas_strided_gemm 859.9us hidet.ops.matmul optimized 800.8us PyTorch 719.2us bs = 4: cublas_batched_gemm 1442us cublas_strided_gemm 1592us hidet.ops.matmul optimized 1606us PyTorch 1466us bs = 8: cublas_batched_gemm 2658us cublas_strided_gemm 2830us hidet.ops.matmul optimized 3475us PyTorch 2753us SECTION 2 FP16 Matrix Multiply: C (bs x m x n) = A (bs x m x k) @ B(bs x k x n) Group 1 results with m = 512, n = 512, k = 512 bs = 1: cublas_batched_gemm 63.5us cublas_strided_gemm 34.0us hidet.ops.matmul optimized 34.9us PyTorch 41.0us bs = 2: cublas_batched_gemm 66.0us cublas_strided_gemm 30.2us hidet.ops.matmul optimized 64.8us PyTorch 45.1us bs = 4: cublas_batched_gemm 72.7us cublas_strided_gemm 32.4us hidet.ops.matmul optimized 24.4us PyTorch 46.3us bs = 8: cublas_batched_gemm 81.2us cublas_strided_gemm 36.2us hidet.ops.matmul optimized 38.5us PyTorch 47.8us Group 2 results with m = 1024, n = 1024, k = 2048 bs = 1: cublas_batched_gemm 71.0us cublas_strided_gemm 60.1us hidet.ops.matmul optimized 65.5us PyTorch 90.6us bs = 2: cublas_batched_gemm 114.8us cublas_strided_gemm 112.3us hidet.ops.matmul optimized 123.1us PyTorch 160.5us bs = 4: cublas_batched_gemm 225.1us cublas_strided_gemm 223.4us hidet.ops.matmul optimized 245.6us PyTorch 319.8us bs = 8: cublas_batched_gemm 442.8us cublas_strided_gemm 439.1us hidet.ops.matmul optimized 733.2us PyTorch 634.8us
- Loading branch information