-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This PR addresses spcl#1388: fix python codegen and `SharedToGlobal1D` template to generate correct code for write without reduction.
- Loading branch information
Showing
3 changed files
with
133 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
""" Tests code generation for array copy on GPU target. """ | ||
import dace | ||
from dace.transformation.auto import auto_optimize | ||
|
||
import pytest | ||
import re | ||
|
||
# this test requires cupy module | ||
cp = pytest.importorskip("cupy") | ||
|
||
# initialize random number generator | ||
rng = cp.random.default_rng(42) | ||
|
||
|
||
@pytest.mark.gpu | ||
def test_gpu_shared_to_global_1D(): | ||
M = 32 | ||
N = dace.symbol('N') | ||
|
||
@dace.program | ||
def transpose_shared_to_global(A: dace.float64[M, N], B: dace.float64[N, M]): | ||
for i in dace.map[0:N]: | ||
local_gather = dace.define_local([M], A.dtype, storage=dace.StorageType.GPU_Shared) | ||
for j in dace.map[0:M]: | ||
local_gather[j] = A[j, i] | ||
B[i, :] = local_gather | ||
|
||
|
||
sdfg = transpose_shared_to_global.to_sdfg() | ||
auto_optimize.apply_gpu_storage(sdfg) | ||
|
||
size_M = M | ||
size_N = 128 | ||
|
||
A = rng.random((size_M, size_N,)) | ||
B = rng.random((size_N, size_M,)) | ||
|
||
ref = A.transpose() | ||
|
||
sdfg(A, B, N=size_N) | ||
cp.allclose(ref, B) | ||
|
||
code = sdfg.generate_code()[1].clean_code # Get GPU code (second file) | ||
m = re.search('dace::SharedToGlobal1D<.+>::Copy', code) | ||
assert m is not None | ||
|
||
|
||
@pytest.mark.gpu | ||
def test_gpu_shared_to_global_1D_accumulate(): | ||
M = 32 | ||
N = dace.symbol('N') | ||
|
||
@dace.program | ||
def transpose_and_add_shared_to_global(A: dace.float64[M, N], B: dace.float64[N, M]): | ||
for i in dace.map[0:N]: | ||
local_gather = dace.define_local([M], A.dtype, storage=dace.StorageType.GPU_Shared) | ||
for j in dace.map[0:M]: | ||
local_gather[j] = A[j, i] | ||
local_gather[:] >> B(M, lambda x, y: x + y)[i, :] | ||
|
||
|
||
sdfg = transpose_and_add_shared_to_global.to_sdfg() | ||
auto_optimize.apply_gpu_storage(sdfg) | ||
|
||
size_M = M | ||
size_N = 128 | ||
|
||
A = rng.random((size_M, size_N,)) | ||
B = rng.random((size_N, size_M,)) | ||
|
||
ref = A.transpose() + B | ||
|
||
sdfg(A, B, N=size_N) | ||
cp.allclose(ref, B) | ||
|
||
code = sdfg.generate_code()[1].clean_code # Get GPU code (second file) | ||
m = re.search('dace::SharedToGlobal1D<.+>::template Accum', code) | ||
assert m is not None | ||
|
||
|
||
if __name__ == '__main__': | ||
test_gpu_shared_to_global_1D() | ||
test_gpu_shared_to_global_1D_accumulate() | ||
|