Skip to content

hortonworks-spark/spark-llap

Repository files navigation

HiveWarehouseConnector

A library to read/write DataFrames and Streaming DataFrames to/from Apache Hive™ using LLAP. With Apache Ranger™, this library provides row/column level fine-grained access controls.

Compatibility

Note that for open-source usage, master branch requires Hive 3.1.0 which is a forthcoming release. For configuration of prior versions, please see prior documentation.

branch Spark Hive HDP
master (Summer 2018) 2.3.1 3.1.0 3.0.0 (GA)
branch-2.3 2.3.0 2.1.0 2.6.x (TP)
branch-2.2 2.2.0 2.1.0 2.6.x (TP)
branch-2.1 2.1.1 2.1.0 2.6.x (TP)
branch-1.6 1.6.3 2.1.0 2.5.x (TP)

Configuration

Ensure the following Spark properties are set via spark-defaults.conf or using --conf or through other Spark configuration.

Property Description Example
spark.sql.hive.hiveserver2.jdbc.url ThriftJDBC URL for LLAP HiveServer2 jdbc:hive2://localhost:10000
spark.datasource.hive.warehouse.load.staging.dir Temp directory for batch writes to Hive /tmp
spark.hadoop.hive.llap.daemon.service.hosts App name for LLAP service @llap0
spark.hadoop.hive.zookeeper.quorum Zookeeper hosts used by LLAP host1:2181;host2:2181;host3:2181

For use in Spark client-mode on kerberized Yarn cluster, set:

Property Description Example
spark.sql.hive.hiveserver2.jdbc.url.principal Set equal to hive.server2.authentication.kerberos.principal hive/_HOST@EXAMPLE.COM

For use in Spark cluster-mode on kerberized Yarn cluster, set:

Property Description Example
spark.security.credentials.hiveserver2.enabled Use Spark ServiceCredentialProvider true

Supported Types

Spark Type Hive Type
ByteType TinyInt
ShortType SmallInt
IntegerType Integer
LongType BigInt
FloatType Float
DoubleType Double
DecimalType Decimal
StringType* String, Char, Varchar*
BinaryType Binary
BooleanType Boolean
TimestampType* Timestamp*
DateType Date
ArrayType Array
StructType Struct
  • A Hive String, Char, Varchar column will be converted into a Spark StringType column.
  • When a Spark StringType column has maxLength metadata, it will be converted into a Hive Varchar column. Otherwise, it will be converted into a Hive String column.
  • A Hive Timestamp column will lose sub-microsecond precision when it is converted into a Spark TimestampType column. Because a Spark TimestampType column is microsecond precision, while a Hive Timestamp column is nanosecond precision.

Unsupported Types

Spark Type Hive Type Plan
CalendarIntervalType Interval Planned for future support
MapType Map Planned for future support
N/A Union Not supported in Spark
NullType N/A Not supported in Hive

Submitting Applications

Support is currently available for spark-shell, pyspark, and spark-submit.

Scala/Java usage:

  1. Locate the hive-warehouse-connector-assembly jar. If building from source, this will be located within the target/scala-2.11 folder. If using pre-built distro, follow instructions from your distro provider, e.g. on HDP the jar would be located in /usr/hdp/current/hive-warehouse-connector/

  2. Use --jars to add the connector jar to app submission, e.g.

spark-shell --jars /usr/hdp/current/hive-warehouse-connector/hive-warehouse-connector-assembly-1.0.0.jar

Python usage:

  1. Follow the instructions above to add the connector jar to app submission.
  2. Additionally add the connector's Python package to app submission, e.g.

pyspark --jars /usr/hdp/current/hive-warehouse-connector/hive-warehouse-connector-assembly-1.0.0.jar --py-files /usr/hdp/current/hive-warehouse-connector/pyspark_hwc-1.0.0.zip

API Usage

Session Operations

HiveWarehouseSession acts as an API to bridge Spark with HiveServer2. In your Spark source, create an instance of HiveWarehouseSession using HiveWarehouseBuilder

  • Create HiveWarehouseSession (assuming spark is an existing SparkSession):

val hive = com.hortonworks.spark.sql.hive.llap.HiveWarehouseBuilder.session(spark).build()

  • Set the current database for unqualified Hive table references:

hive.setDatabase(<database>)

Catalog Operations

  • Execute catalog operation and return DataFrame, e.g.

hive.execute("describe extended web_sales").show(100, false)

  • Show databases:

hive.showDatabases().show(100, false)

  • Show tables for current database:

hive.showTables().show(100, false)

  • Describe table:

hive.describeTable(<table_name>).show(100, false)

  • Create a database:

hive.createDatabase(<database_name>)

  • Create ORC table, e.g.:

hive.createTable("web_sales") .ifNotExists() .column("sold_time_sk", "bigint") .column("ws_ship_date_sk", "bigint") .create()

  • Drop a database:

hive.dropDatabase(<databaseName>, <ifExists>, <useCascade>)

  • Drop a table:

hive.dropTable(<tableName>, <ifExists>, <usePurge>)

Read Operations

  • Execute Hive SELECT query and return DataFrame, e.g.

val df = hive.executeQuery("select * from web_sales")

  • Reference a Hive table as a DataFrame

val df = hive.table(<tableName>)

Write Operations

  • Execute Hive update statement, e.g.

hive.executeUpdate("ALTER TABLE old_name RENAME TO new_name")

  • Write a DataFrame to Hive in batch (uses LOAD DATA INTO TABLE), e.g.

df.write.format("com.hortonworks.spark.sql.hive.llap.HiveWarehouseConnector") .option("table", <tableName>) .save()

  • Write a DataFrame to Hive using HiveStreaming, e.g.
  df.write.format("com.hortonworks.spark.sql.hive.llap.HiveStreamingDataSource")
   .option("database", <databaseName>)
   .option("table", <tableName>)
   .option("metastoreUri", <HMS_URI>)
   .save()

 // To write to static partition
 df.write.format("com.hortonworks.spark.sql.hive.llap.HiveStreamingDataSource")
   .option("database", <databaseName>)
   .option("table", <tableName>)
   .option("partition", <partition>)
   .option("metastoreUri", <HMS URI>)
   .save()
  • Write a Spark Stream to Hive using HiveStreaming, e.g.
stream.writeStream
    .format("com.hortonworks.spark.sql.hive.llap.streaming.HiveStreamingDataSource")
    .option("metastoreUri", metastoreUri)
    .option("database", "streaming")
    .option("table", "web_sales")
    .start()

HiveWarehouseSession Interface

	interface HiveWarehouseSession {

        //Execute Hive SELECT query and return DataFrame
	    Dataset<Row> executeQuery(String sql);

        //Execute Hive update statement
	    boolean executeUpdate(String sql);

        //Execute Hive catalog-browsing operation and return DataFrame
	    Dataset<Row> execute(String sql);

        //Reference a Hive table as a DataFrame
	    Dataset<Row> table(String sql);

        //Return the SparkSession attached to this HiveWarehouseSession
	    SparkSession session();

        //Set the current database for unqualified Hive table references
	    void setDatabase(String name);

        /**
         * Helpers: wrapper functions over execute or executeUpdate
         */

        //Helper for show databases
	    Dataset<Row> showDatabases();

        //Helper for show tables
	    Dataset<Row> showTables();

        //Helper for describeTable
	    Dataset<Row> describeTable(String table);

        //Helper for create database
	    void createDatabase(String database, boolean ifNotExists);

        //Helper for create table stored as ORC
	    CreateTableBuilder createTable(String tableName);

        //Helper for drop database
	    void dropDatabase(String database, boolean ifExists, boolean cascade);

        //Helper for drop table
	    void dropTable(String table, boolean ifExists, boolean purge);
	}

Batch Load Example

Read table data from Hive, transform in Spark, write to new Hive table

	val hive = com.hortonworks.spark.sql.hive.llap.HiveWarehouseBuilder.session(spark).build()
	hive.setDatabase("tpcds_bin_partitioned_orc_1000")
	val df = hive.executeQuery("select * from web_sales")
	hive.setDatabase("spark_llap")
	val tempTable = "t_" + System.currentTimeMillis()
	hive.createTable(tempTable).ifNotExists().column("ws_sold_time_sk", "bigint").column("ws_ship_date_sk", "bigint").create()
	df.select("ws_sold_time_sk", "ws_ship_date_sk").filter("ws_sold_time_sk > 80000").write.format("com.hortonworks.spark.sql.hive.llap.HiveWarehouseConnector").option("table", tempTable).save()
	val df2 = hive.executeQuery("select * from " + tempTable)
	df2.show(20)
	hive.dropTable(tempTable, true, false)