Skip to content

Semantically consistent regularizer for zero-shot learning

License

Notifications You must be signed in to change notification settings

hoseong-kim/score-zeroshot

 
 

Repository files navigation

Semantically Consistent Regularizer (SCoRe)

By Pedro Morgado and Nuno Vasconcelos.

Statistical Visual Computing Lab (SVCL)

University of California, San Diego

Introduction

This repository contains the source code for "Semantically Consistent Regularization for Zero-Shot Recognition", CVPR, 2017.

Implementation was written by Pedro Morgado. If you encounter any issue when using our code/models, let me know.

Citation

Please cite our paper if it helps your research:

@inproceedings{MorgadoCVPR17,
    author={Pedro Morgado and Nuno Vasconcelos},
    title={Semantically Consistent Regularization for Zero-Shot Recognition},
    booktitle={Computer Vision and Pattern Recognition (CVPR), IEEE Conf.~on},
    year={2017},
    organization={IEEE}
}
Pedro Morgado and Nuno Vasconcelos. 
Semantically consistent regularization for zero-shot recognition.
Computer Vision and Pattern Recognition (CVPR), IEEE Conf. on, 2017.

Prerequisites

Tour

Code
  1. score_model.py: Defines the SCoRe model.
  2. score_train.py: Training script.
  3. score_eval.py: Evaluation script.
  4. tools/prepare_LMDBs.py: Script for preparing LMDBs used in score_train.py and score_test.py.

Type python xxx.py --help for usage options.

For a better understanding of the workflow of our code, a script train_eval_CUB.sh is provided for training a SCoRe model on the CUB dataset. This script 1) downloads all required data (CUB and caffemodels for standard CNNs), 2) prepares LMDBs for both images and semantics, 3) trains the classifier and 4) evaluates on source and target (Zero-Shot) classes.

Data
  1. Semantic codewords: Pre-extracted for all classes in both AwA and CUB datasets (see data/).
  2. Partition into source and target classes: see classes.txt, train_classes.txt and test_classes.txt at data/${DB}.
  3. Training sets: data/${DB}/train_images.txt
  4. Test sets: data/${DB}/testRecg_images.txt (source classes) and data/${DB}/testZS_images.txt (target classes).

Results

Mean class accuracy for source and target classes using three architectures: AlexNet, GoogLeNet and VGG19.

Note: Lagrangian coefficients were tuned for Zero-Shot MCA on a set of validation classes. Obtained coefficients are shown below.

Semantics Source Classes Target Classes Semantic Coeff Codeword Coeff
Attributes 72.5 / 85.1 / 84.6 66.7 / 78.3 / 82.8 0.01 10.0
Hierarchy 74.4 / 84.2 / 84.5 52.3 / 61.2 / 60.7 0.05 1.0
Word2Vec 76.7 / 86.7 / 85.8 51.9 / 60.9 / 57.9 0.01 0.5

Key: AlexNet / GoogLeNet / VGG19

Semantics Source Classes Target Classes Semantic Coeff Codeword Coeff
Attributes 61.7 / 71.6 / 70.9 48.5 / 58.4 / 59.5 0.01 1.0
Hierarchy 60.2 / 73.1 / 69.6 24.2 / 31.8 / 31.3 0.05 5.0
Word2Vec 61.4 / 73.6 / 71.9 26.0 / 31.5 / 30.1 0.01 1.0

(↓ Reproduced results in Caltech-UCSD Birds-200-2011 dataset)

Semantics Source Classes Target Classes Semantic Coeff Codeword Coeff
Attributes 62.2 / 73.4 / 69.6 46.7 / 58.5 / 56.3 0.01 1.0
Hierarchy 60.6 / 71.9 / 68.1 24.3 / 25.0 / 27.7 0.05 5.0
Word2Vec 60.7 / 73.4 / 73.9 26.9 / 30.5 / 29.2 0.01 1.0

(↓ Difference between reproduced results (R) and paper ones (P): (R) - (P))

Semantics Source Classes Target Classes
Attributes 0.5 / 1.8 / -1.3 -1.8 / 0.1 / -3.2
Hierarchy 0.4 / -1.2 / -1.5 0.1 / -6.8 / -3.6
Word2Vec -0.7 / -0.2 / 2.0 0.9 / -1.0 / -0.9

Key: AlexNet / GoogLeNet / VGG19

Commands to train each model

Model Attributes
AlexNet python score_train.py A_Attr CUB Attributes AlexNet -g 0.01 -c 1 --gpu 0 --iters 1000 --init_lr 0.0005
GoogLeNet python score_train.py G_Attr CUB Attributes GoogLeNet -g 0.01 -c 1 --gpu 1 --iters 1000 --init_lr 0.0005
VGG19 python score_train.py V_Attr CUB Attributes VGG19 -g 0.01 -c 1 --gpu 0 --iters 1000 --init_lr 0.0005 --batch_size 30
Model Hierarchy
AlexNet python score_train.py A_Hier CUB Hierarchy AlexNet -g 0.05 -c 5 --gpu 1 --iters 1000 --init_lr 0.0005
GoogLeNet python score_train.py G_Hier CUB Hierarchy GoogLeNet -g 0.05 -c 5 --gpu 1 --iters 1000 --init_lr 0.001
VGG19 python score_train.py V_Hier CUB Hierarchy VGG19 -g 0.05 -c 5 --gpu 0 --iters 1000 --init_lr 0.0005 --batch_size 30
Model Word2Vec
AlexNet python score_train.py A_Word CUB Word2Vec AlexNet -g 0.01 -c 1 --gpu 1 --iters 1000 --init_lr 0.0005
GoogLeNet python score_train.py G_Word CUB Word2Vec GoogLeNet -g 0.01 -c 1 --gpu 1 --iters 1000 --init_lr 0.001
VGG19 python score_train.py V_Word CUB Word2Vec VGG19 -g 0.01 -c 1 --gpu 0 --iters 2000 --init_lr 0.0005 --batch_size 30

System environments

  • Ubuntu 16.04
  • GTX 1080 Ti x2
  • CUDA 8.0
  • cuDNN v7

Trained models

These models are compatible with the provided code. Simply download and uncompress the .tar.gz files, and use score_eval.py to evaluate them.

-/- AwA CUB
Attributes AlexNet / GoogLeNet / VGG19 AlexNet / GoogLeNet / VGG19
Hierarchy AlexNet / GoogLeNet / VGG19 AlexNet / GoogLeNet / VGG19
Word2Vec AlexNet / GoogLeNet / VGG19 AlexNet / GoogLeNet / VGG19

About

Semantically consistent regularizer for zero-shot learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.5%
  • Shell 5.5%