-
Notifications
You must be signed in to change notification settings - Fork 710
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
160 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
# 2022.09.30-Changed for building Ghost-ResNet | ||
# Huawei Technologies Co., Ltd. <foss@huawei.com> | ||
""" | ||
Creates a Ghost-ResNet Model as defined in: | ||
GhostNet: More Features from Cheap Operations By Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu. | ||
https://arxiv.org/abs/1911.11907 | ||
""" | ||
import math | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.utils.model_zoo as model_zoo | ||
|
||
|
||
class GhostModule(nn.Conv2d): | ||
def __init__(self, in_channels, out_channels, kernel_size, dw_size=3, ratio=2, stride=1, | ||
padding=0, dilation=1, groups=1, bias=True): | ||
super(GhostModule, self).__init__( | ||
in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) | ||
self.weight = None | ||
self.ratio = ratio | ||
self.dw_size = dw_size | ||
self.dw_dilation = (dw_size - 1) // 2 | ||
self.init_channels = math.ceil(out_channels / ratio) | ||
self.new_channels = self.init_channels * (ratio - 1) | ||
|
||
self.conv1 = nn.Conv2d(self.in_channels, self.init_channels, kernel_size, self.stride, padding=self.padding) | ||
self.conv2 = nn.Conv2d(self.init_channels, self.new_channels, self.dw_size, 1, padding=int(self.dw_size/2), groups=self.init_channels) | ||
|
||
|
||
self.weight1 = nn.Parameter(torch.Tensor(self.init_channels, self.in_channels, kernel_size, kernel_size)) | ||
self.bn1 = nn.BatchNorm2d(self.init_channels) | ||
if self.new_channels > 0: | ||
self.weight2 = nn.Parameter(torch.Tensor(self.new_channels, 1, self.dw_size, self.dw_size)) | ||
self.bn2 = nn.BatchNorm2d(self.out_channels - self.init_channels) | ||
|
||
if bias: | ||
self.bias =nn.Parameter(torch.Tensor(out_channels)) | ||
else: | ||
self.register_parameter('bias', None) | ||
self.reset_custome_parameters() | ||
|
||
def reset_custome_parameters(self): | ||
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5)) | ||
if self.new_channels > 0: | ||
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5)) | ||
if self.bias is not None: | ||
nn.init.constant_(self.bias, 0) | ||
|
||
def forward(self, input): | ||
x1 = self.conv1(input) | ||
if self.new_channels == 0: | ||
return x1 | ||
x2 = self.conv2(x1) | ||
x2 = x2[:, :self.out_channels - self.init_channels, :, :] | ||
x = torch.cat([x1, x2], 1) | ||
return x | ||
|
||
|
||
def conv3x3(in_planes, out_planes, stride=1, s=4, d=3): | ||
"3x3 convolution with padding" | ||
return GhostModule(in_planes, out_planes, kernel_size=3, dw_size=d, ratio=s, | ||
stride=stride, padding=1, bias=False) | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
expansion = 4 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None, s=4, d=3): | ||
super(Bottleneck, self).__init__() | ||
self.conv1 = GhostModule(inplanes, planes, kernel_size=1, dw_size=d, ratio=s, bias=False) | ||
self.conv2 = GhostModule(planes, planes, kernel_size=3, dw_size=d, ratio=s, | ||
stride=stride, padding=1, bias=False) | ||
self.conv3 = GhostModule(planes, planes * 4, kernel_size=1, dw_size=d, ratio=s, bias=False) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.relu(out) | ||
out = self.conv2(out) | ||
out = self.relu(out) | ||
out = self.conv3(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
out += residual | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class ResNet(nn.Module): | ||
|
||
def __init__(self, block, layers, num_classes=1000, s=4, d=3): | ||
self.inplanes = 64 | ||
super(ResNet, self).__init__() | ||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, | ||
bias=False) | ||
self.bn1 = nn.BatchNorm2d(64) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||
self.layer1 = self._make_layer(block, 64, layers[0], stride=1, s=s, d=d) | ||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, s=s, d=d) | ||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, s=s, d=d) | ||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, s=s, d=d) | ||
self.avgpool = nn.AvgPool2d(7, stride=1) | ||
self.fc = nn.Linear(512 * block.expansion, num_classes) | ||
|
||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d) and not isinstance(m, GhostModule): | ||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||
m.weight.data.normal_(0, math.sqrt(2. / n)) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
m.weight.data.fill_(1) | ||
m.bias.data.zero_() | ||
|
||
def _make_layer(self, block, planes, blocks, stride=1, s=4, d=3): | ||
downsample = None | ||
if stride != 1 or self.inplanes != planes * block.expansion: | ||
downsample = nn.Sequential( | ||
GhostModule(self.inplanes, planes * block.expansion, ratio=s, dw_size=d, | ||
kernel_size=1, stride=stride, bias=False), | ||
) | ||
|
||
layers = [] | ||
layers.append(block(self.inplanes, planes, stride, downsample, s, d)) | ||
self.inplanes = planes * block.expansion | ||
for i in range(1, blocks): | ||
layers.append(block(self.inplanes, planes, s=s, d=d)) | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
x = self.conv1(x) | ||
x = self.bn1(x) | ||
x = self.relu(x) | ||
x = self.maxpool(x) | ||
|
||
x = self.layer1(x) | ||
x = self.layer2(x) | ||
x = self.layer3(x) | ||
x = self.layer4(x) | ||
|
||
x = self.avgpool(x) | ||
x = x.view(x.size(0), -1) | ||
x = self.fc(x) | ||
|
||
return x | ||
|
||
|
||
def resnet50(**kwargs): | ||
"""Constructs a ResNet-50 model. | ||
""" | ||
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) | ||
return model | ||
|