Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

A more general solution to model answer extraction instead of output_regex #358

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion community_tasks/_template.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ def __init__(
suite=["community"],
generation_size=-1,
stop_sequence=None,
output_regex=None,
answer_extractor=None,
frozen=False,
)

Expand Down
6 changes: 3 additions & 3 deletions community_tasks/arabic_evals.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ def __init__(
suite=["community"],
generation_size=-1,
stop_sequence=None,
output_regex=None,
answer_extractor=None,
frozen=False,
trust_dataset=True,
version=0,
Expand Down Expand Up @@ -152,7 +152,7 @@ def __init__(
suite=["community"],
generation_size=-1,
stop_sequence=None,
output_regex=None,
answer_extractor=None,
frozen=False,
trust_dataset=True,
version=0,
Expand Down Expand Up @@ -254,7 +254,7 @@ def __init__(
suite=["community"],
generation_size=-1,
stop_sequence=None,
output_regex=None,
answer_extractor=None,
frozen=False,
version=0,
)
Expand Down
16 changes: 8 additions & 8 deletions examples/nanotron/custom_evaluation_tasks.py
Original file line number Diff line number Diff line change
Expand Up @@ -267,7 +267,7 @@ def __init__(
generation_size=40,
trust_dataset=True,
stop_sequence=None,
output_regex=None,
answer_extractor=None,
frozen=False,
):
super().__init__(
Expand All @@ -282,7 +282,7 @@ def __init__(
few_shots_select=few_shots_select,
suite=suite,
generation_size=generation_size,
output_regex=output_regex,
answer_extractor=answer_extractor,
frozen=frozen,
trust_dataset=trust_dataset,
stop_sequence=(stop_sequence if stop_sequence is not None else ["\n"]),
Expand Down Expand Up @@ -371,7 +371,7 @@ def __init__(
generation_size=-1,
trust_dataset=True,
stop_sequence=None,
output_regex=None,
answer_extractor=None,
frozen=False,
):
super().__init__(
Expand All @@ -388,7 +388,7 @@ def __init__(
generation_size=generation_size,
trust_dataset=trust_dataset,
stop_sequence=(stop_sequence if stop_sequence is not None else ["\n"]),
output_regex=output_regex,
answer_extractor=answer_extractor,
frozen=frozen,
)

Expand Down Expand Up @@ -488,7 +488,7 @@ def __init__(
generation_size=4,
trust_dataset=True,
stop_sequence=None,
output_regex=None,
answer_extractor=None,
frozen=False,
):
super().__init__(
Expand All @@ -505,7 +505,7 @@ def __init__(
generation_size=generation_size,
trust_dataset=trust_dataset,
stop_sequence=(stop_sequence if stop_sequence is not None else ["\n"]),
output_regex=output_regex,
answer_extractor=answer_extractor,
frozen=frozen,
)

Expand Down Expand Up @@ -624,7 +624,7 @@ def __init__(
generation_size=-1,
trust_dataset=True,
stop_sequence=None,
output_regex=None,
answer_extractor=None,
frozen=False,
):
super().__init__(
Expand All @@ -641,7 +641,7 @@ def __init__(
generation_size=generation_size,
trust_dataset=trust_dataset,
stop_sequence=(stop_sequence if stop_sequence is not None else ["\n"]),
output_regex=output_regex,
answer_extractor=answer_extractor,
frozen=frozen,
)

Expand Down
4 changes: 2 additions & 2 deletions examples/nanotron/custom_task.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ def mmlu_anatomy(line):
generation_size=5,
metric=[Metrics.loglikelihood_acc_single_token],
stop_sequence=["\n"],
output_regex=None,
answer_extractor=None,
frozen=False,
),
LightevalTaskConfig(
Expand All @@ -98,7 +98,7 @@ def mmlu_anatomy(line):
generation_size=5,
metric=[Metrics.loglikelihood_acc_single_token],
stop_sequence=["\n"],
output_regex=None,
answer_extractor=None,
frozen=False,
),
]
10 changes: 5 additions & 5 deletions src/lighteval/metrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,10 @@
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import re
from typing import Optional

from lighteval.metrics.metrics import Metric, MetricCategory
from lighteval.models.model_output import ModelResponse
from lighteval.models.model_output import AnswerExtractor, ModelResponse
from lighteval.tasks.requests import Doc
from lighteval.utils.utils import as_list

Expand Down Expand Up @@ -89,7 +89,7 @@ def apply_generative_metric( # noqa: C901
responses: list[list[ModelResponse]],
formatted_docs: list[Doc],
metrics: list[Metric],
output_regex: str = None,
answer_extractor: Optional[AnswerExtractor] = None,
max_num_samples: int = 1,
):
outputs = []
Expand All @@ -106,8 +106,8 @@ def apply_generative_metric( # noqa: C901
preds = []

for pred_raw in preds_raw:
if output_regex is not None:
pred = next(iter(re.findall(output_regex, pred_raw)), "")
if answer_extractor is not None:
pred = answer_extractor(pred_raw, formatted_doc.choices)
else:
pred = pred_raw
preds.append(pred)
Expand Down
35 changes: 34 additions & 1 deletion src/lighteval/models/model_output.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,11 @@
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import random
import re
from abc import abstractmethod
from dataclasses import dataclass, field
from typing import Optional, Union
from typing import Literal, Optional, Union

import torch

Expand Down Expand Up @@ -81,3 +84,33 @@ class Batch:
input_lengths: list[int]
truncated: list[int]
padded: list[int]


class AnswerExtractor:
@abstractmethod
def __call__(self, result: str, choices: list[str]) -> str:
...


class RegexAnswerExtractor(AnswerExtractor):
def __init__(
self,
regex_list: list[re.Pattern | str],
fallback: int | Literal["random", "keep", "empty_string"] = "empty_string",
):
self.regex_list: list[re.Pattern] = list(map(re.compile, regex_list))
self.fallback = fallback

def __call__(self, result: str, choices: list[str]) -> str:
for pattern in self.regex_list:
choice = next(iter(re.findall(pattern, result)), "")
if choice in choices:
return choice
if self.fallback == "random":
return random.choice(choices)
elif self.fallback == "keep":
return result
elif self.fallback == "empty_string":
return ""
else:
return choices[self.fallback]
Loading