Skip to content

AdaBoost using boosting stumps for binary classification.

License

Notifications You must be signed in to change notification settings

hyiltiz/AdaBoost.sampled

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

98 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AdaBoost.sampled

A stochastic variant of the Adaboost algorithm, achieves at leasst a 10x speed boost without significant loss of learning accuracy.

Data sets

  1. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#breast-cancer
  2. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#mushrooms
  3. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#diabetes

Possible replacement for 'mushrooms'

  1. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/cod-rna

Literature Review

  1. Weak Learner to subsamples: https://www.sciencedirect.com/science/article/pii/S0377042707001343
  2. Analysis of Adaboost Variants: https://www.hindawi.com/journals/jece/2015/835357/
  3. Seminal paper on Adaboost by Freund and Schapire: https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf
  4. Parametrized Adaboost, penalizes misclassification of already correctly classified samples: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6778011
  5. Real Adaboost : https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1999-ML-Improved%20boosting%20algorithms%20using%20confidence-rated%20predictions%20(Schapire%20y%20Singer).pdf
  6. Gentle Adaboost, Newton stepping at each step instead of exact optimization: https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1999-ML-Improved%20boosting%20algorithms%20using%20confidence-rated%20predictions%20(Schapire%20y%20Singer).pdf
  7. Modest Adaboost, better generalization error than Gentle Adaboost: http://graphicon.ru/html/2005/proceedings/papers/vezhnevetz_vezhnevetz.pdf
  8. Margin pruning boost, reduces overfitting of Gentle Adaboost: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9069/90691P/A-new-method-for-solving-overfitting-problem-of-gentle-AdaBoost/10.1117/12.2050093.full?SSO=1
  9. Penalized Adaboost, improves generalization error of Gentle Adaboost :https://www.jstage.jst.go.jp/article/transinf/E98.D/11/E98.D_2015EDP7069/_article

About

AdaBoost using boosting stumps for binary classification.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •