Skip to content

An implementation of the Fast Super-Resolution Convolutional Neural Network in TensorFlow

License

GPL-3.0, MIT licenses found

Licenses found

GPL-3.0
LICENSE
MIT
LICENSE.MIT
Notifications You must be signed in to change notification settings

igv/FSRCNN-TensorFlow

 
 

Repository files navigation

FSRCNN-TensorFlow

TensorFlow implementation of the Fast Super-Resolution Convolutional Neural Network (FSRCNN). This implements two models: FSRCNN which is more accurate but slower and FSRCNN-s which is faster but less accurate. Based on this project.

Prerequisites

  • Python 3
  • TensorFlow-gpu >= 1.8
  • CUDA & cuDNN >= 6.0
  • Pillow
  • ImageMagick (optional)
  • Wand (optional)

Usage

For training: python main.py
For testing: python main.py --train False

To use FSCRNN-s instead of FSCRNN: python main.py --fast True

Can specify epochs, learning rate, data directory, etc:
python main.py --epoch 100 --learning_rate 0.0002 --data_dir Train
Check main.py for all the possible flags

Result

Original butterfly image:

orig

Ewa_lanczos interpolated image:

ewa_lanczos

Super-resolved image:

fsrcnn

Additional datasets

TODO

  • Add RGB support (Increase each layer depth to 3)

References

About

An implementation of the Fast Super-Resolution Convolutional Neural Network in TensorFlow

Resources

License

GPL-3.0, MIT licenses found

Licenses found

GPL-3.0
LICENSE
MIT
LICENSE.MIT

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%