-
Notifications
You must be signed in to change notification settings - Fork 0
/
reproducible_ephys_functions.py
executable file
·821 lines (679 loc) · 34.5 KB
/
reproducible_ephys_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
"""
General functions for reproducible ephys paper
"""
import pandas as pd
import seaborn as sns
import matplotlib
import numpy as np
import logging
from pathlib import Path
import shutil
from datetime import datetime
import scipy
import traceback
from ibldsp import voltage
from one.api import ONE
from one.alf.exceptions import ALFObjectNotFound
from iblutil.numerical import ismember
from iblatlas.atlas import AllenAtlas
import brainbox.io.one as bbone
from brainbox.behavior import training
import yaml
from brainbox.io.spikeglx import Streamer
from one.params import get_cache_dir
LFP_RESAMPLE_FACTOR = 10
LFP_BAND = [20, 80] # previously [49, 61]
THETA_BAND = [6, 12]
logger = logging.getLogger('paper_reproducible_ephys')
STR_QUERY = 'probe_insertion__session__projects__name__icontains,ibl_neuropixel_brainwide_01,' \
'probe_insertion__session__qc__lt,50,' \
'~probe_insertion__json__qc,CRITICAL,' \
'probe_insertion__session__n_trials__gte,400'
BRAIN_REGIONS = ['PPC', 'CA1', 'DG', 'LP', 'PO']
REGION_RENAME = dict(zip(BRAIN_REGIONS, ['VISa/am', 'CA1', 'DG', 'LP', 'PO']))
def LAB_MAP():
lab_number_map = {'cortexlab': 'Lab 1', 'mainenlab': 'Lab 2', 'churchlandlab': 'Lab 3',
'angelakilab': 'Lab 4', 'wittenlab': 'Lab 5', 'hoferlab': 'Lab 6',
'mrsicflogellab': 'Lab 6', 'danlab': 'Lab 7', 'zadorlab': 'Lab 8',
'steinmetzlab': 'Lab 9', 'churchlandlab_ucla': 'Lab 10',
'hausserlab' : 'Lab 11'}
institution_map = {'cortexlab': 'UCL', 'mainenlab': 'CCU', 'zadorlab': 'CSHL (Z)',
'churchlandlab': 'CSHL (C)', 'angelakilab': 'NYU',
'wittenlab': 'Princeton', 'hoferlab': 'SWC', 'mrsicflogellab': 'SWC',
'danlab': 'Berkeley', 'steinmetzlab': 'UW', 'churchlandlab_ucla': 'UCLA',
'hausserlab': 'UCL (H)'}
colors = np.vstack((sns.color_palette('tab10'), (0, 0, 0)))
institutions = ['Berkeley', 'CCU', 'CSHL (C)', 'CSHL (Z)', 'NYU', 'Princeton', 'SWC', 'UCL',
'UCLA', 'UW', 'UCL (H)']
institution_colors = {}
for i, inst in enumerate(institutions):
institution_colors[inst] = colors[i]
return lab_number_map, institution_map, institution_colors
def plot_vertical_institute_legend(institutes, ax, offset=0.5, span=(0, 1), fontsize=7):
_, _, institution_colors = LAB_MAP()
# institutes = [institution_map[lab] for lab in labs]
institutes = list(set(institutes))
institutes.sort()
pos = np.linspace(span[0], span[1], len(institutes))[::-1]
for p, inst in zip(pos, institutes):
ax.text(offset, p, inst, color=institution_colors[inst], fontsize=fontsize, transform=ax.transAxes)
def plot_horizontal_institute_legend(institutes, ax, offset=0.2, fontsize=8):
_, _, institution_colors = LAB_MAP()
institutes = list(set(institutes))
institutes.sort()
for i, inst in enumerate(institutes):
if i == 0:
text = ax.text(offset, 0.5, inst, color=institution_colors[inst], fontsize=fontsize,
transform=ax.transAxes)
else:
text = ax.annotate(
' ' + inst, xycoords=text, xy=(1, 0), verticalalignment="bottom",
color=institution_colors[inst], fontsize=fontsize)
def query(behavior=False, n_trials=400, resolved=True, min_regions=2, exclude_critical=True, one=None, str_query=None,
as_dataframe=False, bilateral=False):
one = one or ONE()
if isinstance(str_query, str):
django_queries = [str_query]
elif isinstance(str_query, list):
django_queries = str_query
else:
django_queries = []
django_queries.append('probe_insertion__session__projects__name,ibl_neuropixel_brainwide_01')
if exclude_critical:
django_queries.append('probe_insertion__session__qc__lt,50,~probe_insertion__json__qc,CRITICAL')
if resolved:
django_queries.append('probe_insertion__json__extended_qc__alignment_resolved,True')
if behavior:
django_queries.append('probe_insertion__session__extended_qc__behavior,1')
if n_trials > 0:
django_queries.append(f'probe_insertion__session__n_trials__gte,{n_trials}')
django_query = ','.join(django_queries)
if bilateral:
# Query bilateral insertions
right_ins = one.alyx.rest('trajectories', 'list', provenance='Planned',
x=2243, y=-2000, theta=15,
django=django_query)
trajectories = []
for i, eid in enumerate([j['session']['id'] for j in right_ins]):
left_ins = one.alyx.rest('trajectories', 'list', provenance='Planned',
x=-2243, y=-2000, theta=15,
django=django_query, session=eid)
if len(left_ins) == 1:
trajectories.append(left_ins[0])
trajectories.append(right_ins[i])
else:
trajectories = one.alyx.rest('trajectories', 'list', provenance='Planned',
x=-2243, y=-2000, theta=15,
django=django_query)
pids = [traj['probe_insertion'] for traj in trajectories]
if min_regions > 0:
region_traj = []
query_regions = BRAIN_REGIONS.copy()
query_regions[query_regions.index('PPC')] = 'VIS'
# Query how many of the target regions were hit per recording
for i, region in enumerate(query_regions):
region_query = one.alyx.rest(
'trajectories', 'list', provenance='Ephys aligned histology track',
django=f'{django_query},channels__brain_region__acronym__icontains,{region},probe_insertion__in,{pids}')
region_traj = np.append(region_traj, [i['probe_insertion'] for i in region_query])
region_pids, num_regions = np.unique(region_traj, return_counts=True)
isin, _ = ismember(np.array(pids), region_pids[num_regions >= min_regions])
trajectories = [trajectories[i] for i, val in enumerate(isin) if val]
# Convert to dataframe if necessary
if as_dataframe:
trajectories = traj_list_to_dataframe(trajectories)
return trajectories
def traj_list_to_dataframe(trajectories):
trajectories = pd.DataFrame(
data={'subjects': [i['session']['subject'] for i in trajectories],
'dates': [i['session']['start_time'][:10] for i in trajectories],
'probes': [i['probe_name'] for i in trajectories],
'lab': [i['session']['lab'] for i in trajectories],
'eid': [i['session']['id'] for i in trajectories],
'probe_insertion': [i['probe_insertion'] for i in trajectories]})
trajectories['institution'] = trajectories.lab.map(LAB_MAP()[1])
return trajectories
def get_insertions(level=0, recompute=False, as_dataframe=False, one=None, freeze='freeze_2024_03', bilateral=False):
"""
Find insertions used for analysis based on different exclusion levels
Level -1: minimum_regions = 0, resolved = True, behavior = False, n_trial >= 0, exclude_critical = False
Level 0: minimum_regions = 0, resolved = True, behavior = False, n_trial >= 0, exclude_critical = True
:param level: exclusion level -1, 0
:param recompute: whether to recompute the metrics dataframe that is used to exclude recordings at level=2
:param as_dataframe: whether to return a dict or a dataframe
:param one: ONE instance
:return: dict or pandas dataframe of probe insertions
"""
one = one or ONE()
if freeze is not None:
ins_df = pd.read_csv(data_release_path().joinpath(f'{freeze}.csv'))
pids = ins_df[ins_df['level'] >= level].pid.values
insertions = one.alyx.rest('trajectories', 'list', provenance='Planned', django=f'probe_insertion__in,{list(pids)}')
if recompute:
_ = recompute_metrics(insertions, one)
if as_dataframe:
insertions = traj_list_to_dataframe(insertions)
return insertions
if bilateral:
insertions = query(min_regions=0, n_trials=0, behavior=False, exclude_critical=True, one=one,
as_dataframe=as_dataframe, bilateral=True)
return insertions
if level == -1:
insertions = one.alyx.rest('trajectories', 'list', provenance='Planned', x=-2243, y=-2000, theta=15,
django='probe_insertion__session__projects__name,ibl_neuropixel_brainwide_01')
return insertions
if level == 0:
insertions = query(min_regions=0, n_trials=0, behavior=False, exclude_critical=True, one=one,
as_dataframe=as_dataframe)
if recompute:
_ = recompute_metrics(insertions, one)
return insertions
def recompute_metrics(insertions, one, bilateral=False):
"""
Determine whether metrics need to be recomputed or not for given list of insertions
:param insertions: list of insertions
:param one: ONE object
:return:
"""
pids = np.array([ins['probe_insertion'] for ins in insertions])
metrics = load_metrics(bilateral=bilateral)
if (metrics is None) or (metrics.shape[0] == 0):
metrics = compute_metrics(insertions, one=one, bilateral=bilateral)
else:
isin, _ = ismember(pids, metrics['pid'].unique())
if not np.all(isin):
metrics = compute_metrics(insertions, one=one, bilateral=bilateral)
return metrics
def data_release_path():
# Retrieve absolute path of paper-behavior dir
repo_dir = Path(__file__).resolve().parent
data_dir = repo_dir.joinpath('data_releases')
return data_dir
def figure_style(return_colors=False):
"""
Set seaborn style for plotting figures
"""
sns.set(style="ticks", context="paper", font="Arial",
rc={"font.size": 7,
"axes.titlesize": 8,
"axes.labelsize": 7,
"axes.linewidth": 0.5,
"axes.spines.top": False,
"axes.spines.right": False,
"legend.title_fontsize": 7,
"lines.linewidth": 1,
"lines.markersize": 4,
"xtick.labelsize": 6,
"ytick.labelsize": 6,
"savefig.transparent": False,
"xtick.major.size": 2.5,
"ytick.major.size": 2.5,
"xtick.major.width": 0.5,
"ytick.major.width": 0.5,
"xtick.minor.size": 2,
"ytick.minor.size": 2,
"xtick.minor.width": 0.5,
"ytick.minor.width": 0.5,
})
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
if return_colors:
return {'PPC': sns.color_palette('colorblind')[0],
'CA1': sns.color_palette('colorblind')[2],
'DG': sns.color_palette('muted')[2],
'LP': sns.color_palette('colorblind')[4],
'PO': sns.color_palette('colorblind')[6],
'RS': sns.color_palette('Set2')[0],
'FS': sns.color_palette('Set2')[1],
'RS1': sns.color_palette('Set2')[2],
'RS2': sns.color_palette('Set2')[3]}
def get_row_coord(height, ratios=None, hspace=0.6, pad=0.1, span=(0, 1)):
extent = span[1] - span[0]
if isinstance(hspace, list):
hspace = [h / height for h in hspace]
else:
hspace = [hspace / height] * (len(ratios) - 1)
hpad = pad / height
#space = hspace * (len(ratios) - 1)
space = sum(hspace)
# Todo check if we want to pad twice or just once
# available_space = (1 - space - hpad * 2) * extent
available_space = (1 - space - hpad) * extent
fig_extent = available_space / sum(ratios)
la = [[hpad + span[0], hpad + span[0] + fig_extent * ratios[0]]]
for i, r in enumerate(ratios[1:]):
la.append([la[i][-1] + hspace[i], la[i][-1] + hspace[i] + fig_extent * r])
return la
def get_label_pos(height, coord, pad=0.1):
pad = pad / height
return coord - pad
def remove_frame(axes):
axes.set_frame_on(False)
axes.axes.get_xaxis().set_visible(False)
axes.axes.get_yaxis().set_visible(False)
def combine_regions(regions):
"""
Combine all layers of cortex and the dentate gyrus molecular and granular layer
Combine VISa and VISam into PPC
"""
remove = ['1', '2', '3', '4', '5', '6a', '6b', '/']
for i, region in enumerate(regions):
if region[:2] == 'CA':
continue
if (region == 'DG-mo') or (region == 'DG-sg') or (region == 'DG-po'):
regions[i] = 'DG'
for j, char in enumerate(remove):
regions[i] = regions[i].replace(char, '')
if (regions[i] == 'VISa') | (regions[i] == 'VISam'):
regions[i] = 'PPC'
return regions
def load_metrics(bilateral=False, freeze='freeze_2024_03'):
if freeze is not None:
metrics = pd.read_csv(data_release_path().joinpath(f'metrics_{freeze}.csv'))
else:
fname = 'insertion_metrics_bilateral.csv' if bilateral else 'insertion_metrics.csv'
if save_data_path().joinpath(fname).exists():
metrics = pd.read_csv(save_data_path().joinpath(fname))
else:
metrics = None
return metrics
def save_data_path(figure=None):
"""
Path to save data
:param figure: figure number e.g 'figure3'
:return:
"""
try:
import reproducible_ephys_paths
defined_paths = dir(reproducible_ephys_paths)
if 'DATA_PATH' in defined_paths:
data_path = Path(reproducible_ephys_paths.DATA_PATH)
else:
data_path = Path(get_cache_dir()).joinpath('paper_repro_ephys_data')
except ModuleNotFoundError:
data_path = Path(get_cache_dir()).joinpath('paper_repro_ephys_data')
if figure is not None:
data_path = data_path.joinpath(str(figure))
data_path.mkdir(exist_ok=True, parents=True)
return data_path
def save_figure_path(figure=None):
"""
Path to save figures
:param figure: figure number e.g 'figure3'
:return:
"""
try:
import reproducible_ephys_paths
defined_paths = dir(reproducible_ephys_paths)
if 'FIG_PATH' in defined_paths:
fig_path = Path(reproducible_ephys_paths.FIG_PATH)
else:
fig_path = Path(get_cache_dir()).joinpath('paper_repro_ephys_data')
except ModuleNotFoundError:
fig_path = Path(get_cache_dir()).joinpath('paper_repro_ephys_data')
if figure is not None:
fig_path = fig_path.joinpath(str(figure), 'figures')
else:
fig_path = fig_path.joinpath('figures')
fig_path.mkdir(exist_ok=True, parents=True)
return fig_path
def compute_metrics(insertions, one=None, ba=None, spike_sorter='pykilosort', save=True, bilateral=False):
one = one or ONE()
ba = ba or AllenAtlas()
lab_number_map, institution_map, _ = LAB_MAP()
metrics = pd.DataFrame()
for i, ins in enumerate(insertions):
eid = ins['session']['id']
lab = ins['session']['lab']
subject = ins['session']['subject']
sess_date = ins['session']['start_time'][:10]
pid = ins['probe_insertion']
probe = ins['probe_name']
collection = f'alf/{probe}/{spike_sorter}'
try:
subj = one.alyx.rest('subjects', 'list', nickname=subject)
subj_dob = subj[0]['birth_date']
age_at_recording = (datetime.strptime(sess_date, '%Y-%m-%d') - datetime.strptime(subj_dob, '%Y-%m-%d')).days
n_sess = len(one.search(subject=subject, date_range=[subj_dob, sess_date]))
except Exception:
age_at_recording = np.nan
n_sess = np.nan
try:
trials = one.load_object(eid, 'trials', collection='alf', attribute=training.TRIALS_KEYS)
n_trials = trials["stimOn_times"].shape[0]
behav = training.criterion_delay(n_trials=n_trials, perf_easy=training.compute_performance_easy(trials)).astype(bool)
except Exception:
sess_details = one.alyx.rest('sessions', 'read', id=eid)
n_trials = sess_details['n_trials']
behav = bool(sess_details['extended_qc']['behavior'])
try:
ap = one.load_object(eid, 'ephysChannels', collection=f'raw_ephys_data/{probe}', attribute=['apRMS'])
if 'apRMS' not in ap.keys():
pid_qc = one.alyx.rest('insertions', 'list', id=pid)[0]['json']['extended_qc']
ap_val = pid_qc['apRms_p90_proc'] * 1e6 if 'apRms_p90_proc' in pid_qc.keys() else 0
except ALFObjectNotFound:
logger.warning(f'ephysChannels object not found for pid: {pid}')
ap = {}
try:
pid_qc = one.alyx.rest('insertions', 'list', id=pid)[0]['json']['extended_qc']
ap_val = pid_qc['apRms_p90_proc'] * 1e6 if 'apRms_p90_proc' in pid_qc.keys() else 0
except Exception:
ap_val = np.nan
try:
lfp = one.load_object(eid, 'ephysSpectralDensityLF', collection=f'raw_ephys_data/{probe}')
except ALFObjectNotFound:
logger.warning(f'ephysSpectralDensityLF object not found for pid: {pid}')
lfp = {}
try:
df_lfp = compute_lfp_insertion(one=one, pid=ins['probe_insertion'])
sl = bbone.SpikeSortingLoader(eid=eid, pname=probe, one=one, atlas=ba)
spikes, clusters, channels = sl.load_spike_sorting(revision='2024-03-22', enforce_version=False)
clusters = sl.merge_clusters(spikes, clusters, channels)
channels['rawInd'] = one.load_dataset(eid, dataset='channels.rawInd.npy', collection=collection)
channels['rep_site_acronym'] = combine_regions(channels['acronym'])
clusters['rep_site_acronym'] = channels['rep_site_acronym'][clusters['channels']]
except Exception as err:
logger.error(f'{pid}: {err}')
try:
# Compute total yield on probe
for feat in [clusters, channels]:
unique_ids = np.unique(feat['atlas_id'])
root_ids = []
for un in unique_ids:
if un in [0, 997]:
continue
ancs = ba.regions.ancestors(un)
if ancs['id'][1] != 8:
root_ids.append(un)
idx = np.isin(feat['atlas_id'], np.array(root_ids))
feat['acronym'][idx] = 'root'
good_channels = np.bitwise_and(channels['acronym'] != 'void', channels['acronym'] != 'root')
la = np.sum(np.bitwise_or(clusters['acronym'] == 'void', clusters['acronym'] == 'root'))
good_clusters = np.bitwise_and(clusters['label'] == 1, np.bitwise_and(clusters['acronym'] != 'void',
clusters['acronym'] != 'root'))
total_yield = np.sum(good_clusters) / np.sum(good_channels)
lfp_derivative = np.median(np.abs(np.gradient(df_lfp['lfp_power'])))
except Exception as err:
logger.error(f'{pid}: {err}')
try:
for region in BRAIN_REGIONS:
region_clusters = np.where(np.bitwise_and(clusters['rep_site_acronym'] == region,
clusters['label'] == 1))[0]
region_chan = channels['rawInd'][np.where(channels['rep_site_acronym'] == region)[0]]
if np.all(np.isnan(df_lfp['lfp_theta'])):
lfp_theta_region = np.nan
else:
lfp_theta_region = df_lfp['lfp_theta'][region_chan].mean()
if np.all(np.isnan(df_lfp['lfp_power'])):
lfp_region = np.nan
else:
lfp_region = df_lfp['lfp_power'][region_chan].mean()
if 'power' in lfp.keys() and region_chan.shape[0] > 0:
freqs = (lfp['freqs'] > LFP_BAND[0]) & (lfp['freqs'] < LFP_BAND[1])
chan_power = lfp['power'][:, region_chan]
lfp_region_raw = np.mean(10 * np.log(chan_power[freqs])) # convert to dB
freqs = (lfp['freqs'] > THETA_BAND[0]) & (lfp['freqs'] < THETA_BAND[1])
chan_power = lfp['power'][:, region_chan]
lfp_theta_region_raw = np.mean(10 * np.log(chan_power[freqs])) # convert to dB
else:
# TO DO SEE IF THIS IS LEGIT
lfp_region_raw = np.nan
lfp_theta_region_raw = np.nan
if 'apRMS' in ap.keys() and region_chan.shape[0] > 0:
ap_rms = np.percentile(ap['apRMS'][1, region_chan], 90) * 1e6
elif region_chan.shape[0] > 0:
ap_rms = ap_val
else:
ap_rms = 0
metrics = pd.concat((metrics, pd.DataFrame(
index=[metrics.shape[0] + 1], data={'pid': pid, 'eid': eid, 'probe': probe,
'lab': lab, 'subject': subject, 'institute': institution_map[lab],
'lab_number': lab_number_map[lab],
'region': region, 'date': sess_date,
'n_channels': region_chan.shape[0],
'neuron_yield': region_clusters.shape[0],
'total_yield': total_yield,
'lfp_derivative': lfp_derivative,
'lfp_power': lfp_region,
'lfp_theta_power': lfp_theta_region,
'lfp_power_raw': lfp_region_raw,
'lfp_theta_power_raw': lfp_theta_region_raw,
'lfp_whole_probe': np.mean(df_lfp['lfp_power']),
'rms_ap_p90': ap_rms,
'n_trials': n_trials,
'behavior': behav,
'age_at_recording': age_at_recording,
'n_sess_before_recording': n_sess})))
except Exception as err:
logger.error(f'{pid}: {err}')
if save:
fname = 'insertion_metrics_bilateral.csv' if bilateral else 'insertion_metrics.csv'
metrics.to_csv(save_data_path().joinpath(fname))
return metrics
def filter_recordings(df=None, by_anatomy_only=False, max_ap_rms=40, max_lfp_derivative=1,
min_neurons_per_channel=0.1, min_channels_region=5, min_regions=2, min_neuron_region=4,
min_lab_region=3, min_rec_lab=4, n_trials=400, behavior=False,
exclude_subjects=['NR_0031'], recompute=True, freeze='freeze_2024_03', one=None):
"""
Filter values in dataframe according to different exclusion criteria
:param df: pandas dataframe
:param by_anatomy_only: bool
:param max_ap_rms:
:param max_lfp_power:
:param min_neurons_per_channel:
:param min_channels_region:
:param min_regions:
:param min_neuron_region:
:param min_lab_region:
:param n_trials:
:param behavior:
:return:
"""
# Load in the insertion metrics
metrics = load_metrics(freeze=freeze)
if metrics is None:
ins = get_insertions(level=0, recompute=False, freeze=freeze)
metrics = compute_metrics(ins, one=one, save=True)
if df is not None:
isin, _ = ismember(df['pid'].unique(), metrics['pid'].unique())
if ~np.all(isin):
logger.warning(f'Warning: {np.sum(~isin)} recordings are missing metrics')
if recompute:
ins = get_insertions(level=0, one=one, recompute=False, freeze=freeze)
metrics = compute_metrics(ins, one=one, save=True)
# Region Level
# no. of channels per region
metrics['region_hit'] = metrics['n_channels'] > min_channels_region
# Set -inf lfp power to nan
metrics.loc[metrics['lfp_power_raw'] == float('-inf'), 'lfp_power_raw'] = np.nan
# Calculate lfp power ratio between CA1 and cortex
for i, pid in enumerate(np.unique(metrics['pid'])):
metrics.loc[metrics['pid'] == pid, 'lfp_ratio'] = (
metrics.loc[(metrics['pid'] == pid) & (metrics['region'] == 'LP'), 'lfp_power_raw'].values[0]
/ metrics.loc[(metrics['pid'] == pid) & (metrics['region'] == 'DG'), 'lfp_power_raw'].values[0])
# PID level
metrics = metrics.groupby('pid', group_keys=False).apply(lambda m: m.assign(high_noise=lambda m: m['rms_ap_p90'].median() > max_ap_rms))
metrics = metrics.groupby('pid', group_keys=False).apply(lambda m: m.assign(high_lfp=lambda m: m['lfp_derivative'].median() > max_lfp_derivative))
metrics = metrics.groupby('pid', group_keys=False).apply(lambda m: m.assign(low_yield=lambda m: m['total_yield'] < min_neurons_per_channel))
metrics = metrics.groupby('pid', group_keys=False).apply(lambda m: m.assign(missed_target=lambda m: m['region_hit'].sum() < min_regions))
metrics = metrics.groupby('pid', group_keys=False).apply(lambda m: m.assign(low_trials=lambda m: m['n_trials'] < n_trials))
sum_metrics = metrics['high_noise'] + metrics['high_lfp'] + metrics['low_yield'] + metrics['missed_target'] + metrics['low_trials']
if by_anatomy_only:
sum_metrics = metrics['missed_target'] # by_anatomy_only exclusion criteria applied
if behavior:
sum_metrics += ~metrics['behavior']
metrics['include'] = sum_metrics == 0
# Exclude subjects indicated to exclude from further analysis
metrics['artifacts'] = bool(0)
for subj in exclude_subjects:
idx = metrics.loc[(metrics['subject'] == subj)].index
metrics.loc[idx, 'include'] = False
metrics.loc[idx, 'artifacts'] = True
metrics['lab_include'] = bool(0)
metrics['permute_include'] = bool(0)
metrics['decode_no_qc_include'] = bool(0)
# For permutation tests
metrics_red = metrics[metrics['include'] == 1]
# Have minimum number of recordings per lab
inst_count = metrics_red.groupby(['institute']).pid.nunique()
institutes = [key for key, val in inst_count.items() if val >= min_rec_lab]
#institutes = [key for key, val in inst_count.items()]
for lab in institutes:
idx = metrics.loc[(metrics['institute'] == lab) & (metrics['include'] == 1)].index
metrics.loc[idx, 'lab_include'] = True
# Now for permutation test
metrics_red = metrics_red[metrics_red['institute'].isin(institutes)]
# Minimum number of recordings per lab per region with enough good units
labreg = {val: {reg: 0 for reg in metrics.region.unique()} for val in institutes}
pid_labreg = {val: {reg: [] for reg in metrics.region.unique()} for val in institutes}
metrics_red = metrics_red.groupby(['institute', 'pid', 'region'])
for key in metrics_red.groups.keys():
df_k = metrics_red.get_group(key)
# needs to be based on the neuron_yield
if df_k.iloc[0]['neuron_yield'] >= min_neuron_region:
labreg[key[0]][key[2]] += 1
pid_labreg[key[0]][key[2]].append(key[1])
for lab, regs in labreg.items():
for reg, count in regs.items():
if count >= min_lab_region:
pids = pid_labreg[lab][reg]
idx = metrics.loc[(metrics['region'] == reg) & (metrics['institute'] == lab)].index
m_pids = metrics.loc[idx, 'pid'].values
_, _, loc = np.intersect1d(pids, m_pids, return_indices=True)
idx = idx[loc]
metrics.loc[idx, 'permute_include'] = True
# Now for lab decodig regardless of QC
metrics_no_qc = metrics.groupby(['institute', 'pid', 'region'])
for key in metrics_no_qc.groups.keys():
df_k = metrics_no_qc.get_group(key)
# needs to be based on the neuron_yield
if df_k.iloc[0]['neuron_yield'] >= min_neuron_region:
if key[0] in labreg: # make sure the institute key is in institutes!
labreg[key[0]][key[2]] += 1
pid_labreg[key[0]][key[2]].append(key[1])
for lab, regs in labreg.items():
for reg, count in regs.items():
if count >= min_lab_region:
pids = pid_labreg[lab][reg]
idx = metrics.loc[(metrics['region'] == reg) & (metrics['institute'] == lab)].index
m_pids = metrics.loc[idx, 'pid'].values
_, _, loc = np.intersect1d(pids, m_pids, return_indices=True)
idx = idx[loc]
metrics.loc[idx, 'decode_no_qc_include'] = True
if df is None:
# Sort the index so it is the same as the orignal frame that was passed in
df = metrics
else:
df['original_index'] = df.index
df = df.merge(metrics, on=['pid', 'region', 'subject', 'eid', 'probe', 'date', 'lab'])
# Sort the index so it is the same as the orignal frame that was passed in
df = df.sort_values('original_index').reset_index(drop=True)
return df
def repo_path():
"""
Return path of repo
:return:
"""
return Path(__file__).parent.resolve()
def save_dataset_info(one, figure):
uuid_path = save_data_path(figure=figure).joinpath('one_uuids')
uuid_path.mkdir(exist_ok=True, parents=True)
_, filename = one.save_loaded_ids(clear_list=False)
if filename:
shutil.move(filename, uuid_path.joinpath(f'{figure}_dataset_uuids.csv'))
# Save the session IDs
_, filename = one.save_loaded_ids(sessions_only=True)
if filename:
shutil.move(filename, uuid_path.joinpath(f'{figure}_session_uuids.csv'))
def compute_lfp_insertion(one, pid, recompute=False):
"""
From a PID, downloads several snippets of raw data, apply destriping, and output the PSD per channel
in the theta and LFP bands in a dataframe
:param one:
:param pid:
:param recompute:
:return:
"""
pid_directory = save_data_path().joinpath('lfp_destripe_snippets').joinpath(pid)
saved_file = save_data_path().joinpath('lfp_destripe_snippets').joinpath(f"lfp_{pid}.pqt")
if recompute is False and saved_file.exists():
return pd.read_parquet(saved_file)
try:
lfp_destripe(pid, one=one, typ='lf', prefix="", destination=pid_directory, remove_cached=True, clobber=False)
# then we loop over the snippets and compute the RMS of each
lfp_files = list(pid_directory.rglob('lf.npy'))
for j, lfp_file in enumerate(lfp_files):
lfp = np.load(lfp_file).astype(np.float32)
f, pow = scipy.signal.periodogram(lfp, fs=250, scaling='density')
if j == 0:
rms_lf_band, rms_lf, rms_theta_band = (np.zeros((lfp.shape[0], len(lfp_files))) for i in range(3))
rms_lf_band[:, j] = np.nanmean(
10 * np.log10(pow[:, np.logical_and(f >= LFP_BAND[0], f <= LFP_BAND[1])]), axis=-1)
rms_theta_band[:, j] = np.nanmean(
10 * np.log10(pow[:, np.logical_and(f >= THETA_BAND[0], f <= THETA_BAND[1])]), axis=-1)
rms_lf[:, j] = np.mean(np.sqrt(lfp.astype(np.double) ** 2), axis=-1)
lfp_power = np.nanmedian(rms_lf_band - 20 * np.log10(f[1]), axis=-1) * 2
lfp_theta = np.nanmedian(rms_theta_band - 20 * np.log10(f[1]), axis=-1) * 2
df_lfp = pd.DataFrame.from_dict({'lfp_power': lfp_power, 'lfp_theta': lfp_theta})
df_lfp.to_parquet(saved_file)
except Exception:
print(f'pid: {pid} RAW LFP ERROR \n', traceback.format_exc())
lfp_power = np.nan
lfp_theta = np.nan
df_lfp = pd.DataFrame.from_dict({'lfp_power': lfp_power, 'lfp_theta': lfp_theta})
return df_lfp
def lfp_destripe(pid, one=None, typ='ap', prefix="", destination=None, remove_cached=True, clobber=False):
"""
Stream chunks of data from a given probe insertion
Output folder architecture (the UUID is the probe insertion UUID):
f4bd76a6-66c9-41f3-9311-6962315f8fc8
├── T00500
│ ├── ap.npy
│ ├── ap.yml
│ ├── lf.npy
│ ├── lf.yml
│ ├── spikes.pqt
│ └── waveforms.npy
:param pid:
:param one:
:param typ:
:param prefix:
:param destination:
:return:
"""
assert one
assert destination
eid, pname = one.pid2eid(pid)
butter_kwargs = {'N': 3, 'Wn': 300 / 30000 * 2, 'btype': 'highpass'}
sos = scipy.signal.butter(**butter_kwargs, output='sos')
if typ == 'ap':
sample_duration, sample_spacings, skip_start_end = (10 * 30_000, 1_000 * 30_000, 500 * 30_000)
elif typ == 'lf':
sample_duration, sample_spacings, skip_start_end = (20 * 2_500, 1_000 * 2_500, 500 * 2_500)
sr = Streamer(pid=pid, one=one, remove_cached=remove_cached, typ=typ)
chunk_size = sr.chunks['chunk_bounds'][1]
nsamples = np.ceil((sr.shape[0] - sample_duration - skip_start_end * 2) / sample_spacings)
t0_samples = np.round((np.arange(nsamples) * sample_spacings + skip_start_end) / chunk_size) * chunk_size
for s0 in t0_samples:
t0 = int(s0 / chunk_size)
file_destripe = destination.joinpath(f"T{t0:05d}", f"{typ}.npy")
file_yaml = file_destripe.with_suffix('.yml')
if file_destripe.exists() and clobber is False:
continue
tsel = slice(int(s0), int(s0) + int(sample_duration))
raw = sr[tsel, :-sr.nsync].T
if typ == 'ap':
destripe = voltage.destripe(raw, fs=sr.fs, neuropixel_version=1, channel_labels=True)
# saves a 0.05 secs snippet of the butterworth filtered data at 0.5sec offset for QC purposes
butt = scipy.signal.sosfiltfilt(sos, raw)[:, int(sr.fs * 0.5):int(sr.fs * 0.55)]
fs_out = sr.fs
elif typ == 'lf':
destripe = voltage.destripe_lfp(raw, fs=sr.fs, neuropixel_version=1, channel_labels=True)
destripe = scipy.signal.decimate(destripe, LFP_RESAMPLE_FACTOR, axis=1, ftype='fir')
fs_out = sr.fs / LFP_RESAMPLE_FACTOR
file_destripe.parent.mkdir(exist_ok=True, parents=True)
np.save(file_destripe, destripe.astype(np.float16))
with open(file_yaml, 'w+') as fp:
yaml.dump(dict(fs=fs_out, eid=eid, pid=pid, pname=pname, nc=raw.shape[0], dtype="float16"), fp)
if typ == 'ap':
np.save(file_destripe.parent.joinpath('raw.npy'), butt.astype(np.float16))