Skip to content

Model Zoo for Intel® Architecture v2.6.0

Compare
Choose a tag to compare
@ashahba ashahba released this 17 Dec 23:00

TensorFlow Framework

  • Support for TensorFlow v2.7.0

New TensorFlow models

  • N/A

Other features and bug fixes for TensorFlow models

  • Updates to only use docker --privileged when required and check --cpuset
    • Except for BERT Large and Wide and Deep models
  • Updated the ImageNet download link
  • Fix platform_util.py for systems with only one socket or subset of cores within a socket
  • Replace USE_DAAL4PY_SKLEARN env var with patch_sklearn
  • Add error handling for when a frozen graph isn't passed for BERT large FP32 inference*

PyTorch Framework

  • Support for PyTorch v1.10.0 and IPEX v1.10.0

New PyTorch models

  • GoogLeNet Inference(FP32, BFloat16**)
  • Inception v3 Inference(FP32, BFloat16**)
  • MNASNet 0.5 Inference(FP32, BFloat16**)
  • MNASNet 1.0 Inference(FP32, BFloat16**)
  • ResNet 50 Inference(Int8)
  • ResNet 50 Training(FP32, BFloat16**)
  • ResNet 101 Inference(FP32, BFloat16**)
  • ResNet 152 Inference(FP32, BFloat16**)
  • ResNext 32x4d Inference(FP32, BFloat16**)
  • ResNext 32x16d Inference(FP32, Int8, BFloat16**)
  • VGG-11 Inference(FP32, BFloat16**)
  • VGG-11 with batch normalization Inference(FP32, BFloat16**)
  • Wide ResNet-50-2 Inference(FP32, BFloat16**)
  • Wide ResNet-101-2 Inference(FP32, BFloat16**)
  • BERT base Inference(FP32, BFloat16**)
  • BERT large Inference(FP32, Int8, BFloat16**)
  • BERT large Training(FP32, BFloat16**)
  • DistilBERT base Inference(FP32, BFloat16**)
  • RNN-T Inference(FP32, BFloat16**)
  • RNN-T Training(FP32, BFloat16**)
  • RoBERTa base Inference(FP32, BFloat16**)
  • Faster R-CNN ResNet50 FPN Inference(FP32
  • Mask R-CNN Inference(FP32, BFloat16**)
  • Mask R-CNN Training(FP32, BFloat16**)
  • Mask R-CNN ResNet50 FPN Inference(FP32)
  • RetinaNet ResNet-50 FPN Inference(FP32)
  • SSD-ResNet34 Inference(FP32, Int8, BFloat16**)
  • SSD-ResNet34 Training(FP32, BFloat16**)
  • DLRM Inference(FP32, Int8, BFloat16**)
  • DLRM Training(FP32)

Other features and bug fixes for PyTorch models

  • DLRM and ResNet 50 documentation updates

Supported Configurations

Intel Model Zoo 2.6.0 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8, 3.9
  • Docker Server v19+
  • Docker Client v18+