-
Notifications
You must be signed in to change notification settings - Fork 175
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
--------- Co-authored-by: Dmitry Razdoburdin <> Co-authored-by: Nikolay Petrov <nikolay.a.petrov@intel.com> Co-authored-by: Alexander Andreev <alexander.andreev@intel.com>
- Loading branch information
1 parent
27d3f39
commit 12b963a
Showing
14 changed files
with
352 additions
and
107 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
#!/usr/bin/env python | ||
#=============================================================================== | ||
# Copyright 2023 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
#=============================================================================== | ||
|
||
from .model_builders import GBTDAALBaseModel, convert_model | ||
|
||
__all__ = ['GBTDAALBaseModel', 'convert_model'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
#=============================================================================== | ||
# Copyright 2023 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
#=============================================================================== | ||
|
||
# daal4py Model builders API | ||
|
||
import numpy as np | ||
import daal4py as d4p | ||
|
||
try: | ||
from pandas import DataFrame | ||
from pandas.core.dtypes.cast import find_common_type | ||
pandas_is_imported = True | ||
except (ImportError, ModuleNotFoundError): | ||
pandas_is_imported = False | ||
|
||
|
||
def parse_dtype(dt): | ||
if dt == np.double: | ||
return "double" | ||
if dt == np.single: | ||
return "float" | ||
raise ValueError(f"Input array has unexpected dtype = {dt}") | ||
|
||
|
||
def getFPType(X): | ||
if pandas_is_imported: | ||
if isinstance(X, DataFrame): | ||
dt = find_common_type(X.dtypes.tolist()) | ||
return parse_dtype(dt) | ||
|
||
dt = getattr(X, 'dtype', None) | ||
return parse_dtype(dt) | ||
|
||
|
||
class GBTDAALBaseModel: | ||
def _get_params_from_lightgbm(self, params): | ||
self.n_classes_ = params["num_tree_per_iteration"] | ||
objective_fun = params["objective"] | ||
if self.n_classes_ <= 2: | ||
if "binary" in objective_fun: # nClasses == 1 | ||
self.n_classes_ = 2 | ||
|
||
self.n_features_in_ = params["max_feature_idx"] + 1 | ||
|
||
def _get_params_from_xgboost(self, params): | ||
self.n_classes_ = int(params["learner"]["learner_model_param"]["num_class"]) | ||
objective_fun = params["learner"]["learner_train_param"]["objective"] | ||
if self.n_classes_ <= 2: | ||
if objective_fun in ["binary:logistic", "binary:logitraw"]: | ||
self.n_classes_ = 2 | ||
|
||
self.n_features_in_ = int(params["learner"]["learner_model_param"]["num_feature"]) | ||
|
||
def _get_params_from_catboost(self, params): | ||
if 'class_params' in params['model_info']: | ||
self.n_classes_ = len(params['model_info']['class_params']['class_to_label']) | ||
self.n_features_in_ = len(params['features_info']['float_features']) | ||
|
||
def _convert_model_from_lightgbm(self, booster): | ||
lgbm_params = d4p.get_lightgbm_params(booster) | ||
self.daal_model_ = d4p.get_gbt_model_from_lightgbm(booster, lgbm_params) | ||
self._get_params_from_lightgbm(lgbm_params) | ||
|
||
def _convert_model_from_xgboost(self, booster): | ||
xgb_params = d4p.get_xgboost_params(booster) | ||
self.daal_model_ = d4p.get_gbt_model_from_xgboost(booster, xgb_params) | ||
self._get_params_from_xgboost(xgb_params) | ||
|
||
def _convert_model_from_catboost(self, booster): | ||
catboost_params = d4p.get_catboost_params(booster) | ||
self.daal_model_ = d4p.get_gbt_model_from_catboost(booster) | ||
self._get_params_from_catboost(catboost_params) | ||
|
||
def _convert_model(self, model): | ||
(submodule_name, class_name) = (model.__class__.__module__, | ||
model.__class__.__name__) | ||
self_class_name = self.__class__.__name__ | ||
|
||
# Build GBTDAALClassifier from LightGBM | ||
if (submodule_name, class_name) == ("lightgbm.sklearn", "LGBMClassifier"): | ||
if self_class_name == "GBTDAALClassifier": | ||
self._convert_model_from_lightgbm(model.booster_) | ||
else: | ||
raise TypeError(f"Only GBTDAALClassifier can be created from\ | ||
{submodule_name}.{class_name} (got {self_class_name})") | ||
# Build GBTDAALClassifier from XGBoost | ||
elif (submodule_name, class_name) == ("xgboost.sklearn", "XGBClassifier"): | ||
if self_class_name == "GBTDAALClassifier": | ||
self._convert_model_from_xgboost(model.get_booster()) | ||
else: | ||
raise TypeError(f"Only GBTDAALClassifier can be created from\ | ||
{submodule_name}.{class_name} (got {self_class_name})") | ||
# Build GBTDAALClassifier from CatBoost | ||
elif (submodule_name, class_name) == ("catboost.core", "CatBoostClassifier"): | ||
if self_class_name == "GBTDAALClassifier": | ||
self._convert_model_from_catboost(model) | ||
else: | ||
raise TypeError(f"Only GBTDAALClassifier can be created from\ | ||
{submodule_name}.{class_name} (got {self_class_name})") | ||
# Build GBTDAALRegressor from LightGBM | ||
elif (submodule_name, class_name) == ("lightgbm.sklearn", "LGBMRegressor"): | ||
if self_class_name == "GBTDAALRegressor": | ||
self._convert_model_from_lightgbm(model.booster_) | ||
else: | ||
raise TypeError(f"Only GBTDAALRegressor can be created from\ | ||
{submodule_name}.{class_name} (got {self_class_name})") | ||
# Build GBTDAALRegressor from XGBoost | ||
elif (submodule_name, class_name) == ("xgboost.sklearn", "XGBRegressor"): | ||
if self_class_name == "GBTDAALRegressor": | ||
self._convert_model_from_xgboost(model.get_booster()) | ||
else: | ||
raise TypeError(f"Only GBTDAALRegressor can be created from\ | ||
{submodule_name}.{class_name} (got {self_class_name})") | ||
# Build GBTDAALRegressor from CatBoost | ||
elif (submodule_name, class_name) == ("catboost.core", "CatBoostRegressor"): | ||
if self_class_name == "GBTDAALRegressor": | ||
self._convert_model_from_catboost(model) | ||
else: | ||
raise TypeError(f"Only GBTDAALRegressor can be created from\ | ||
{submodule_name}.{class_name} (got {self_class_name})") | ||
# Build GBTDAALModel from LightGBM | ||
elif (submodule_name, class_name) == ("lightgbm.basic", "Booster"): | ||
if self_class_name == "GBTDAALModel": | ||
self._convert_model_from_lightgbm(model) | ||
else: | ||
raise TypeError(f"Only GBTDAALModel can be created from\ | ||
{submodule_name}.{class_name} (got {self_class_name})") | ||
# Build GBTDAALModel from XGBoost | ||
elif (submodule_name, class_name) == ("xgboost.core", "Booster"): | ||
if self_class_name == "GBTDAALModel": | ||
self._convert_model_from_xgboost(model) | ||
else: | ||
raise TypeError(f"Only GBTDAALModel can be created from\ | ||
{submodule_name}.{class_name} (got {self_class_name})") | ||
# Build GBTDAALModel from CatBoost | ||
elif (submodule_name, class_name) == ("catboost.core", "CatBoost"): | ||
if self_class_name == "GBTDAALModel": | ||
self._convert_model_from_catboost(model) | ||
else: | ||
raise TypeError(f"Only GBTDAALModel can be created from\ | ||
{submodule_name}.{class_name} (got {self_class_name})") | ||
else: | ||
raise TypeError(f"Unknown model format {submodule_name}.{class_name}") | ||
|
||
def _predict_classification(self, X, fptype, resultsToEvaluate): | ||
if X.shape[1] != self.n_features_in_: | ||
raise ValueError('Shape of input is different from what was seen in `fit`') | ||
|
||
if not hasattr(self, 'daal_model_'): | ||
raise ValueError(( | ||
"The class {} instance does not have 'daal_model_' attribute set. " | ||
"Call 'fit' with appropriate arguments before using this method.") | ||
.format(type(self).__name__)) | ||
|
||
# Prediction | ||
predict_algo = d4p.gbt_classification_prediction( | ||
fptype=fptype, | ||
nClasses=self.n_classes_, | ||
resultsToEvaluate=resultsToEvaluate) | ||
predict_result = predict_algo.compute(X, self.daal_model_) | ||
|
||
if resultsToEvaluate == "computeClassLabels": | ||
return predict_result.prediction.ravel().astype(np.int64, copy=False) | ||
else: | ||
return predict_result.probabilities | ||
|
||
def _predict_regression(self, X, fptype): | ||
if X.shape[1] != self.n_features_in_: | ||
raise ValueError('Shape of input is different from what was seen in `fit`') | ||
|
||
if not hasattr(self, 'daal_model_'): | ||
raise ValueError(( | ||
"The class {} instance does not have 'daal_model_' attribute set. " | ||
"Call 'fit' with appropriate arguments before using this method.").format( | ||
type(self).__name__)) | ||
|
||
# Prediction | ||
predict_algo = d4p.gbt_regression_prediction(fptype=fptype) | ||
predict_result = predict_algo.compute(X, self.daal_model_) | ||
|
||
return predict_result.prediction.ravel() | ||
|
||
|
||
class GBTDAALModel(GBTDAALBaseModel): | ||
def __init__(self): | ||
pass | ||
|
||
def predict(self, X): | ||
fptype = getFPType(X) | ||
if self._is_regression: | ||
return self._predict_regression(X, fptype) | ||
else: | ||
return self._predict_classification(X, fptype, "computeClassLabels") | ||
|
||
def predict_proba(self, X): | ||
fptype = getFPType(X) | ||
if self._is_regression: | ||
raise NotImplementedError("Can't predict probabilities for regression task") | ||
else: | ||
return self._predict_classification(X, fptype, "computeClassProbabilities") | ||
|
||
|
||
def convert_model(model): | ||
gbm = GBTDAALModel() | ||
gbm._convert_model(model) | ||
|
||
gbm._is_regression = isinstance(gbm.daal_model_, d4p.gbt_regression_model) | ||
|
||
return gbm |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.