Skip to content

Commit

Permalink
Update deselected_tests.yaml
Browse files Browse the repository at this point in the history
  • Loading branch information
icfaust authored Nov 12, 2024
1 parent 660aaf1 commit 7bdb533
Showing 1 changed file with 47 additions and 47 deletions.
94 changes: 47 additions & 47 deletions deselected_tests.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -381,25 +381,25 @@ gpu:
# Segfaults
- ensemble/tests/test_weight_boosting.py
# Fails
#- cluster/tests/test_dbscan.py::test_weighted_dbscan
#- cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse-normal]
#- model_selection/tests/test_search.py::test_unsupervised_grid_search
#- ensemble/tests/test_bagging.py::test_estimators_samples
#- ensemble/tests/test_voting.py::test_sample_weight
#- metrics/tests/test_score_objects.py::test_average_precision_pos_label
#- model_selection/tests/test_search.py::test_search_default_iid
#- neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors
#- neighbors/tests/test_neighbors.py::test_neighbors_metrics
#- svm/tests/test_sparse.py::test_svc
#- svm/tests/test_sparse.py::test_svc_iris
#- svm/tests/test_sparse.py::test_sparse_realdata
#- svm/tests/test_svm.py::test_precomputed
#- svm/tests/test_svm.py::test_tweak_params
#- svm/tests/test_svm.py::test_svm_classifier_sided_sample_weight[estimator0]
#- svm/tests/test_svm.py::test_svm_equivalence_sample_weight_C
#- svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-1-SVC]
#- svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-2-SVC]
#- svm/tests/test_svm.py::test_svc_clone_with_callable_kernel
- cluster/tests/test_dbscan.py::test_weighted_dbscan
- cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse-normal]
- model_selection/tests/test_search.py::test_unsupervised_grid_search
- ensemble/tests/test_bagging.py::test_estimators_samples
- ensemble/tests/test_voting.py::test_sample_weight
- metrics/tests/test_score_objects.py::test_average_precision_pos_label
- model_selection/tests/test_search.py::test_search_default_iid
- neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors
- neighbors/tests/test_neighbors.py::test_neighbors_metrics
- svm/tests/test_sparse.py::test_svc
- svm/tests/test_sparse.py::test_svc_iris
- svm/tests/test_sparse.py::test_sparse_realdata
- svm/tests/test_svm.py::test_precomputed
- svm/tests/test_svm.py::test_tweak_params
- svm/tests/test_svm.py::test_svm_classifier_sided_sample_weight[estimator0]
- svm/tests/test_svm.py::test_svm_equivalence_sample_weight_C
- svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-1-SVC]
- svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-2-SVC]
- svm/tests/test_svm.py::test_svc_clone_with_callable_kernel
# sparse input is not implemented for DBSCAN.
- tests/test_common.py::test_estimators[RandomForestClassifier()-check_class_weight_classifiers]
- tests/test_common.py::test_estimators[SVC()-check_sample_weights_not_an_array]
Expand All @@ -412,26 +412,26 @@ gpu:
- tests/test_common.py::test_search_cv

# Other device issues
#- tests/test_multioutput.py::test_classifier_chain_tuple_order[list]
#- tests/test_multioutput.py::test_classifier_chain_tuple_order[tuple]
- tests/test_multioutput.py::test_classifier_chain_tuple_order[list]
- tests/test_multioutput.py::test_classifier_chain_tuple_order[tuple]
# KD Tree (not implemented for GPU)
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-l2-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-l2-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-l2-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-l2-1000-5-100]
# failing due to numeric/code error
#- linear_model/tests/test_common.py::test_balance_property[42-False-LogisticRegressionCV]
#- sklearn/manifold/tests/test_t_sne.py::test_n_iter_without_progress
#- model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-False]
#- model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-True]
#- tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence
#- tests/test_calibration.py::test_calibrated_classifier_cv_zeros_sample_weights_equivalence
#- tests/test_common.py::test_estimators[FeatureAgglomeration()-check_parameters_default_constructible]
#- neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_methods_subset_invariance]
#- tests/test_common.py::test_transformers_get_feature_names_out[StackingRegressor(estimators=[('est1',Ridge(alpha=0.1)),('est2',Ridge(alpha=1))])]
#- tests/test_common.py::test_transformers_get_feature_names_out[VotingRegressor(estimators=[('est1',Ridge(alpha=0.1)),('est2',Ridge(alpha=1))])]
#- tests/test_common.py::test_f_contiguous_array_estimator[TSNE]
#- manifold/tests/test_t_sne.py::test_tsne_works_with_pandas_output
- linear_model/tests/test_common.py::test_balance_property[42-False-LogisticRegressionCV]
- sklearn/manifold/tests/test_t_sne.py::test_n_iter_without_progress
- model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-False]
- model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-True]
- tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence
- tests/test_calibration.py::test_calibrated_classifier_cv_zeros_sample_weights_equivalence
- tests/test_common.py::test_estimators[FeatureAgglomeration()-check_parameters_default_constructible]
- neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_methods_subset_invariance]
- tests/test_common.py::test_transformers_get_feature_names_out[StackingRegressor(estimators=[('est1',Ridge(alpha=0.1)),('est2',Ridge(alpha=1))])]
- tests/test_common.py::test_transformers_get_feature_names_out[VotingRegressor(estimators=[('est1',Ridge(alpha=0.1)),('est2',Ridge(alpha=1))])]
- tests/test_common.py::test_f_contiguous_array_estimator[TSNE]
- manifold/tests/test_t_sne.py::test_tsne_works_with_pandas_output

# GPU Forest algorithm implementation does not follow certain Scikit-learn standards
- ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth
Expand All @@ -441,17 +441,17 @@ gpu:
- ensemble/tests/test_forest.py::test_max_samples_boundary_regressors

# numerical issues in GPU Forest algorithms which require further investigation
#- ensemble/tests/test_voting.py::test_predict_on_toy_problem[42]
#- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_class_weight_classifiers]
#- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_sample_weights_invariance(kind=zeros)]
#- tests/test_common.py::test_estimators[RandomForestRegressor()-check_regressor_data_not_an_array]
#- ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[ExtraTreesClassifier]
#- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_classifier_data_not_an_array]
#- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_classifiers_train]
#- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_classifiers_train(readonly_memmap=True)]
#- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_fit_idempotent]
#- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_fit_idempotent]
#- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_regressor_data_not_an_array]
- ensemble/tests/test_voting.py::test_predict_on_toy_problem[42]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_class_weight_classifiers]
- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_sample_weights_invariance(kind=zeros)]
- tests/test_common.py::test_estimators[RandomForestRegressor()-check_regressor_data_not_an_array]
- ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[ExtraTreesClassifier]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_classifier_data_not_an_array]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_classifiers_train]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_classifiers_train(readonly_memmap=True)]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_fit_idempotent]
- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_fit_idempotent]
- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_regressor_data_not_an_array]

# GPU implementation of Extra Trees doesn't support sample_weights
# comparisons to GPU with sample weights will use different algorithms
Expand All @@ -460,10 +460,10 @@ gpu:
- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_sample_weights_invariance(kind=ones)]

# RuntimeError: Device support is not implemented, failing as result of fallback to cpu false
#- svm/tests/test_svm.py::test_unfitted
#- tests/test_common.py::test_estimators[SVC()-check_estimators_unfitted]
- svm/tests/test_svm.py::test_unfitted
- tests/test_common.py::test_estimators[SVC()-check_estimators_unfitted]

# Failed on the onedal's LinearRegression call.
# RuntimeError: oneapi::mkl::lapack::potrf: computation error: info = 2: Leading principal minor of order
# 2 is not positive, and the factorization could not be completed.
#- ensemble/tests/test_stacking.py::test_stacking_prefit[StackingRegressor-DummyRegressor-predict-final_estimator1-X1-y1]
- ensemble/tests/test_stacking.py::test_stacking_prefit[StackingRegressor-DummyRegressor-predict-final_estimator1-X1-y1]

0 comments on commit 7bdb533

Please sign in to comment.