Skip to content

Commit

Permalink
Add test for xgboost modelbuiler (#1359)
Browse files Browse the repository at this point in the history
* Add test

* Add test and remove example for xgboost early stop

* Change xgboost modelbuilder interface

* Change objective in test

* Move xgboost import inside the test to avoid failures

* Fix typo

* Formatting
  • Loading branch information
avolkov-intel authored Jul 27, 2023
1 parent 0ccbbfa commit f6ab585
Showing 1 changed file with 101 additions and 0 deletions.
101 changes: 101 additions & 0 deletions tests/test_xgboost_mb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# ===============================================================================
# Copyright 2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================

import importlib.util
import unittest

import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

import daal4py as d4p
from daal4py import _get__daal_link_version__ as dv
from daal4py.sklearn._utils import daal_check_version

# First item is major version - 2021,
# second is minor+patch - 0110,
# third item is status - B
daal_version = (int(dv()[0:4]), dv()[10:11], int(dv()[4:8]))
reason = str(((2021, "P", 1))) + " not supported in this library version "
reason += str(daal_version)


class XgboostModelBuilder(unittest.TestCase):
@unittest.skipUnless(
all(
[
hasattr(d4p, "get_gbt_model_from_xgboost"),
hasattr(d4p, "gbt_classification_prediction"),
daal_check_version(((2021, "P", 1))),
]
),
reason,
)
@unittest.skipUnless(
importlib.util.find_spec("xgboost") is not None,
"xgboost library is not installed",
)
def test_earlystop(self):
import xgboost as xgb

num_classes = 3
X, y = make_classification(
n_samples=1000,
n_features=10,
n_informative=3,
n_classes=num_classes,
random_state=42,
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42
)

# training parameters setting
params = {
"n_estimators": 100,
"max_bin": 256,
"scale_pos_weight": 2,
"lambda_l2": 1,
"alpha": 0.9,
"max_depth": 8,
"num_leaves": 2**8,
"verbosity": 0,
"objective": "multi:softproba",
"learning_rate": 0.3,
"num_class": num_classes,
"early_stopping_rounds": 5,
}

xgb_clf = xgb.XGBClassifier(**params)
xgb_clf.fit(X_train, y_train, eval_set=[(X_test, y_test)])
booster = xgb_clf.get_booster()

xgb_prediction = xgb_clf.predict(X_test)
xgb_proba = xgb_clf.predict_proba(X_test)
xgb_errors_count = np.count_nonzero(xgb_prediction - np.ravel(y_test))

daal_model = d4p.mb.convert_model(booster)

daal_prediction = daal_model.predict(X_test)
daal_proba = daal_model.predict_proba(X_test)
daal_errors_count = np.count_nonzero(daal_prediction - np.ravel(y_test))

self.assertTrue(np.absolute(xgb_errors_count - daal_errors_count) == 0)
self.assertTrue(np.allclose(xgb_proba, daal_proba))


if __name__ == "__main__":
unittest.main()

0 comments on commit f6ab585

Please sign in to comment.