Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add aten::_nested_from_padded #1045

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 108 additions & 0 deletions src/ATen/native/xpu/NestedTensorTransformerFunctions.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
#include <ATen/ATen.h>
#include <ATen/NestedTensorImpl.h>
#include <ATen/native/nested/NestedTensorTransformerFunctions.h>
#include <ATen/native/xpu/NestedTensorTransformerFunctions.h>

namespace at::native {
namespace {
int64_t padded_tensor_numel(const Tensor& sizes) {
const auto sizes_num_rows = sizes.sizes()[0];
const auto sizes_row_length = sizes.sizes()[1];
const auto* sizes_data = sizes.data_ptr<int64_t>();
int64_t numel = 0;
for (const auto row_num : c10::irange(sizes_num_rows)) {
const auto* row_ptr = sizes_data + row_num * sizes_row_length;
int64_t prod = 1;
for (const auto idx : c10::irange(sizes_row_length)) {
prod *= row_ptr[idx];
}
numel += prod;
}
return numel;
}
} // namespace
Tensor nested_from_padded_xpu(
const Tensor& padded,
const Tensor& sizes,
bool do_transform_0213) {
if (padded.dim() > 1 && padded.dim() < 5) {
// Instead of erroring, call the generic version
if (!(padded.dim() == 4 && do_transform_0213) &&
!(padded.dim() == 3 && !do_transform_0213)) {
return at::native::nested_from_padded_generic(
padded, sizes, do_transform_0213);
}
if (padded.dtype() != at::kFloat && padded.dtype() != kHalf) {
TORCH_WARN_ONCE(
"nested_from_padded CUDA kernels only support fp32/fp16; falling "
"back to slower generic kernel");
return at::native::nested_from_padded_generic(
padded, sizes, do_transform_0213);
}
Tensor target_offsets =
at::native::NestedTensor_batch_offsets_from_size_tensor(sizes, 0);
Tensor padded_sizes_tensor = at::tensor(padded.sizes());
Tensor output = at::empty({padded_tensor_numel(sizes)}, padded.options());
Tensor target_size_sizes = sizes.reshape(-1);

target_offsets = target_offsets.to(at::Device(kXPU), at::kInt);
padded_sizes_tensor = padded_sizes_tensor.to(at::Device(kXPU), at::kInt);
target_size_sizes = target_size_sizes.to(at::Device(kXPU), at::kInt);

auto output_size_ptr = target_size_sizes.data_ptr<int>();
auto input_size_ptr = padded_sizes_tensor.data_ptr<int>();
auto offsets_ptr = target_offsets.data_ptr<int>();

Tensor padded_contiguous = padded.contiguous();

if (padded.dtype() == at::kFloat) {
if (do_transform_0213) {
xpu::launch_remove_padding_transform0213_kernel(
padded_contiguous.data_ptr<float>(),
output.data_ptr<float>(),
offsets_ptr,
input_size_ptr,
output_size_ptr,
padded_contiguous.dim() - 2,
padded_contiguous.sizes()[0]);
} else {
xpu::launch_remove_padding_kernel(
padded_contiguous.data_ptr<float>(),
output.data_ptr<float>(),
offsets_ptr,
input_size_ptr,
output_size_ptr,
padded_contiguous.dim() - 1,
padded_contiguous.sizes()[0]);
}
} else if (padded.dtype() == at::kHalf) {
if (do_transform_0213) {
xpu::launch_remove_padding_transform0213_kernel(
padded_contiguous.data_ptr<c10::Half>(),
output.data_ptr<c10::Half>(),
offsets_ptr,
input_size_ptr,
output_size_ptr,
padded_contiguous.dim() - 2,
padded_contiguous.sizes()[0]);
} else {
xpu::launch_remove_padding_kernel(
padded_contiguous.data_ptr<c10::Half>(),
output.data_ptr<c10::Half>(),
offsets_ptr,
input_size_ptr,
output_size_ptr,
padded_contiguous.dim() - 1,
padded_contiguous.sizes()[0]);
}
} else {
AT_ERROR("Only support fp32/fp16 for padded input");
}
return at::detail::make_tensor<at::native::NestedTensorImpl>(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I remember we have not upstreamed DispatchKey::NestedTensorXPU. It should not work.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@fengyuan14 , I created #1141 to keep track of PRs related to NestedTensor support for xpu.

std::move(output), sizes);
} else {
return at::native::nested_from_padded_generic(padded, sizes);
}
}

} // namespace at::native
26 changes: 26 additions & 0 deletions src/ATen/native/xpu/NestedTensorTransformerFunctions.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
#pragma once
#include <ATen/ATen.h>

namespace at::native::xpu {

template <typename T>
TORCH_XPU_API void launch_remove_padding_kernel(
const T* input,
T* output,
const int* offsets,
const int* input_sizes,
const int* output_sizes,
int output_dim,
int batch_size);

template <typename T>
TORCH_XPU_API void launch_remove_padding_transform0213_kernel(
const T* input,
T* output,
const int* offsets,
const int* input_sizes,
const int* output_sizes,
int output_dim,
const int batch_size);

} // namespace at::native::xpu
Loading
Loading