Skip to content

Seamlessly track SQLAlchemy performance in FastAPI with plug-and-play monitoring middleware πŸ”

License

Notifications You must be signed in to change notification settings

iwanbolzern/fastapi-sqlalchemy-monitor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

FastAPI SQLAlchemy Monitor

PyPI version License: MIT Test Python Versions

A middleware for FastAPI that monitors SQLAlchemy database queries, providing insights into database usage patterns and helping catch potential performance issues.

Features

  • πŸ“Š Track total database query invocations and execution times
  • πŸ” Detailed per-query statistics
  • ⚑ Async support
  • 🎯 Configurable actions for monitoring and alerting
  • πŸ›‘οΈ Built-in protection against N+1 query problems

Installation

pip install fastapi-sqlalchemy-monitor

Quick Start

from fastapi import FastAPI
from sqlalchemy import create_engine

from fastapi_sqlalchemy_monitor import SQLAlchemyMonitor
from fastapi_sqlalchemy_monitor.action import WarnMaxTotalInvocation, PrintStatistics

# Create async engine
engine = create_engine("sqlite:///./test.db")

app = FastAPI()

# Add the middleware with actions
app.add_middleware(
    SQLAlchemyMonitor,
    engine=engine,
    actions=[
        WarnMaxTotalInvocation(max_invocations=10),  # Warn if too many queries
        PrintStatistics()  # Print statistics after each request
    ]
)

Actions

The middleware supports different types of actions that can be triggered based on query statistics.

Built-in Actions

  • WarnMaxTotalInvocation: Log a warning when query count exceeds threshold
  • ErrorMaxTotalInvocation: Log an error when query count exceeds threshold
  • RaiseMaxTotalInvocation: Raise an exception when query count exceeds threshold
  • LogStatistics: Log query statistics
  • PrintStatistics: Print query statistics

Custom Actions

The middleware provides two interfaces for implementing custom actions:

  • Action: Simple interface that executes after every request
  • ConditionalAction: Advanced interface that executes only when specific conditions are met

Basic Custom Action

Here's an example of a custom action that records Prometheus metrics:

from prometheus_client import Counter

from fastapi_sqlalchemy_monitor import AlchemyStatistics
from fastapi_sqlalchemy_monitor.action import Action

class PrometheusAction(Action):
    def __init__(self):
        self.query_counter = Counter(
            'sql_queries_total', 
            'Total number of SQL queries executed'
        )
        
    def handle(self, statistics: AlchemyStatistics):
        self.query_counter.inc(statistics.total_invocations)

Conditional Action Example

Here's an example of a conditional action that monitors for slow queries:

import logging

from fastapi_sqlalchemy_monitor import AlchemyStatistics
from fastapi_sqlalchemy_monitor.action import ConditionalAction

class SlowQueryMonitor(ConditionalAction):
    def __init__(self, threshold_ms: float):
        self.threshold_ms = threshold_ms

    def _condition(self, statistics: AlchemyStatistics) -> bool:
        # Check if any query exceeds the time threshold
        return any(
            query.total_invocation_time_ms > self.threshold_ms 
            for query in statistics.query_stats.values()
        )

    def _handle(self, statistics: AlchemyStatistics):
        # Log details of slow queries
        for query_stat in statistics.query_stats.values():
            if query_stat.total_invocation_time_ms > self.threshold_ms:
                logging.warning(
                    f"Slow query detected ({query_stat.total_invocation_time_ms:.2f}ms): "
                    f"{query_stat.query}"
                )

Using Custom Actions

Here's how to use custom actions:

app.add_middleware(
    SQLAlchemyMonitor,
    engine=engine,
    actions=[
        PrometheusAction(),
        SlowQueryMonitor(threshold_ms=100)
    ]
)

Available Statistics

When implementing custom actions, you have access to these statistics properties:

  • statistics.total_invocations: Total number of queries executed
  • statistics.total_invocation_time_ms: Total execution time in milliseconds
  • statistics.query_stats: Dictionary of per-query statistics

Each QueryStatistic in query_stats contains:

  • query: The SQL query string
  • total_invocations: Number of times this query was executed
  • total_invocation_time_ms: Total execution time for this query
  • invocation_times_ms: List of individual execution times

Best Practices

  1. Keep actions focused on a single responsibility
  2. Use appropriate log levels for different severity conditions
  3. Consider performance impact of complex evaluations
  4. Use type hints for better code maintenance

Example with Async SQLAlchemy

from fastapi import FastAPI
from sqlalchemy.ext.asyncio import create_async_engine

from fastapi_sqlalchemy_monitor import SQLAlchemyMonitor
from fastapi_sqlalchemy_monitor.action import PrintStatistics

# Create async engine
engine = create_async_engine("sqlite+aiosqlite:///./test.db")

app = FastAPI()

# Add middleware
app.add_middleware(
    SQLAlchemyMonitor,
    engine=engine,
    actions=[PrintStatistics()]
)

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License.

About

Seamlessly track SQLAlchemy performance in FastAPI with plug-and-play monitoring middleware πŸ”

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages