Skip to content

Commit

Permalink
Merge pull request #181 from jacanchaplais/feature/spherical-momentum…
Browse files Browse the repository at this point in the history
…-178

Sample momentum from uniform spherical distribution #178
  • Loading branch information
jacanchaplais authored Jun 1, 2024
2 parents 14425b9 + dc0df52 commit fd7fb3f
Show file tree
Hide file tree
Showing 3 changed files with 165 additions and 1 deletion.
78 changes: 78 additions & 0 deletions graphicle/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -1333,6 +1333,84 @@ def __attrs_post_init__(self):
self.dtype = np.dtype(list(zip("xyze", it.repeat("<f8"))))
self._HANDLED_TYPES = (np.ndarray, nm.Number, cla.Sequence)

@classmethod
def from_spherical_uniform(
cls,
size: int,
max_energy: float,
massless: float = 0.0,
seed: ty.Optional[int] = None,
) -> "MomentumArray":
"""Returns a ``MomentumArray`` whose elements are sampled from
uniform distributions of energy and 3-momentum.
.. versionadded:: 0.4.0
Parameters
----------
size : int
Number of elements.
max_energy : float
Upper bound for the energy of the momenta.
massless : float
Probability for any given momentum element to be massless.
Default is ``0.0``.
seed : int, optional
Random number generator seed. Use the same seed for
consistent results.
Returns
-------
MomentumArray
Set of momenta, sampled uniformly in the energy component,
and with uniform probability density over the surface of a
3-sphere for the spatial components.
Raises
------
ValueError
If massless is not within the interval [0.0, 1.0].
Notes
-----
Some 'massless' particles may have small, but finite masses.
This is due to numerical errors associated with floating point
calculations.
"""
if not (0.0 <= massless <= 1.0):
raise ValueError(
"Probability of massless particles must be in the "
"interval [0, 1]."
)
rng = np.random.default_rng(seed=seed)
energy = rng.uniform(0.0, max_energy, size)
p_mag = energy
if massless == 0.0:
mass = rng.uniform(0.0, energy)
p_mag = calculate._root_diff_two_squares(energy, mass)
elif massless < 1.0:
p_mag = p_mag.copy()
mask = rng.random(size) < massless
masked_e = energy[~mask]
mass = rng.uniform(0.0, masked_e)
p_mag[~mask] = calculate._root_diff_two_squares(masked_e, mass)
theta_polar = p_mag * np.exp(
1.0j * np.arccos(1.0 - 2.0 * rng.random(size, dtype=np.float64))
)
phi_polar = theta_polar.real * np.exp(
1.0j * rng.uniform(-np.pi, np.pi, size)
)
return cls(
np.hstack(
[
phi_polar.real.reshape(-1, 1),
phi_polar.imag.reshape(-1, 1),
theta_polar.imag.reshape(-1, 1),
energy.reshape(-1, 1),
]
)
)

@property
def __array_interface__(self) -> ty.Dict[str, ty.Any]:
return self._data.__array_interface__
Expand Down
6 changes: 5 additions & 1 deletion graphicle/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,7 +178,11 @@ def split_momentum(
parent = _momentum_to_numpy(momentum)
children = np.tile(parent, (2, 1))
children[0, :] *= z
children[0, :3] @= rotation_matrix(angle, axis).T
# backwards compatibility, switched inplace syntax for explicit ufunc
# children[0, :3] @= rotation_matrix(angle, axis).T
np.matmul(
children[0, :3], rotation_matrix(angle, axis).T, out=children[0, :3]
)
children[1, :] -= children[0, :]
return gcl.MomentumArray(children)

Expand Down
82 changes: 82 additions & 0 deletions tests/test_transform.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
"""
``test_transform``
==================
Unit tests for the data structures, probing their attributes and
methods.
"""
import math

import numpy as np
import pytest

import graphicle as gcl

DoubleVector = gcl.base.DoubleVector


def unit_vec_about_axis(vec: DoubleVector, axis: DoubleVector) -> DoubleVector:
"""Normalises ``vec``, such that its closest distance from ``axis``
is unity. This enables us to consider it as a point along a 2D unit
circle about ``axis``, albeit embedded in 3D space.
"""
if not math.isclose(np.linalg.norm(axis), 1.0):
raise ValueError("axis must be unit length.")
mag = np.linalg.norm(vec)
axis_angle = np.arccos(np.dot(vec, axis) / mag)
radius = mag * np.sin(axis_angle)
return vec / radius


def angular_distance_about_axis(
vec_1: DoubleVector, vec_2: DoubleVector, axis: DoubleVector
) -> float:
"""Computes the angle subtended by the chord connecting projections
of ``vec_1`` and ``vec_2`` in the plane of the unit circle about
``axis``.
Will always give a positive number, as direction is not considered.
"""
chord = unit_vec_about_axis(vec_2, axis) - unit_vec_about_axis(vec_1, axis)
chord_length = np.linalg.norm(chord)
return abs(2.0 * np.arcsin(0.5 * chord_length).item())


def test_momentum_split():
rng = np.random.default_rng()
for _ in range(100):
energy_fraction = rng.uniform(1.0e-4, 0.5)
angles = rng.uniform(-1.0, 1.0, 3)
angles[0] = np.arccos(angles[0])
angles[1:] *= np.pi
rotation_angle = angles[2].item()
rotation_axis = gcl.transform.SphericalAngle(*angles[:2].tolist())
parent = gcl.MomentumArray.from_spherical_uniform(1, 100.0)
children = gcl.transform.split_momentum(
parent, energy_fraction, rotation_angle, rotation_axis
)
child_sum = np.sum(children, axis=0)
assert np.allclose(parent, child_sum)
first_child = children[0].copy()
actual_angle = angular_distance_about_axis(
parent._data[0, :3],
first_child._data[0, :3],
np.array(gcl.transform._angles_to_axis(rotation_axis)),
)
assert math.isclose(abs(rotation_angle), actual_angle)
# invert the split of the first child:
first_child_inv = children[0].copy()
first_child_inv /= energy_fraction
np.matmul(
first_child_inv._data[0, :3],
gcl.transform.rotation_matrix(
-rotation_angle,
rotation_axis,
).T,
out=first_child_inv._data[0, :3],
)
assert np.allclose(parent, first_child_inv)


if __name__ == "__main__":
pytest.main()

0 comments on commit fd7fb3f

Please sign in to comment.