GhostNetV2: Enhance Cheap Operation with Long-Range Attention
conda create -n PyTorch python=3.10.10
conda activate PyTorch
conda install python=3.10.10 pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install opencv-python
pip install pyyaml
pip install timm
pip install tqdm
- The test results including accuracy, params and FLOP are obtained by using fused model
- Configure your
IMAGENET
dataset path inmain.py
for training - Run
bash main.sh $ --train
for training,$
is number of GPUs
- Configure your
IMAGENET
path inmain.py
for testing - Run
python main.py --test
for testing
Version | Epochs | Top-1 Acc | Top-5 Acc | Params (M) | FLOP (M) | Download |
---|---|---|---|---|---|---|
GhostNetV2-1.0 | 450 | - | - | 6.126 | 167.689 | - |
GhostNetV2-1.0* | 450 | 75.15 | 92.25 | 6.126 | 167.689 | model |
GhostNetV2-1.3* | 450 | 76.67 | 93.32 | 8.920 | 270.156 | model |
GhostNetV2-1.6* | 450 | 77.76 | 93.97 | 12.343 | 399.636 | model |
*
means that weights are ported from original repo, see reference