Skip to content

jahongir7174/GhostNetV2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GhostNetV2: Enhance Cheap Operation with Long-Range Attention

Installation

conda create -n PyTorch python=3.10.10
conda activate PyTorch
conda install python=3.10.10 pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install opencv-python
pip install pyyaml
pip install timm
pip install tqdm

Note

  • The test results including accuracy, params and FLOP are obtained by using fused model

Train

  • Configure your IMAGENET dataset path in main.py for training
  • Run bash main.sh $ --train for training, $ is number of GPUs

Test

  • Configure your IMAGENET path in main.py for testing
  • Run python main.py --test for testing

Results

Version Epochs Top-1 Acc Top-5 Acc Params (M) FLOP (M) Download
GhostNetV2-1.0 450 - - 6.126 167.689 -
GhostNetV2-1.0* 450 75.15 92.25 6.126 167.689 model
GhostNetV2-1.3* 450 76.67 93.32 8.920 270.156 model
GhostNetV2-1.6* 450 77.76 93.97 12.343 399.636 model
  • * means that weights are ported from original repo, see reference

Reference

Releases

No releases published

Packages

No packages published