Skip to content

Impacts of data anonymization on model prediction for diabetes

License

Notifications You must be signed in to change notification settings

jaimedantas/data-anonymization-diabetes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data anonymization for Machine Learning

Impacts of data anonymization on model prediction for diabetes. A feed-forward neural network is trained on the anonymized data and the accuracy is compared.

Feed-forward neural network

Diferential Privacy

Two techniques are applied for anonymization: Laplace noise and generalization herarchies.

Dataset

The dataset contains 16 features and 520 records which were collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladeshusi.

Islam M.M.F., Ferdousi R., Rahman S., Bushra H.Y. (2020) Likelihood Prediction of Diabetes at Early Stage Using Data Mining Techniques. In: Gupta M., Konar D., Bhattacharyya S., Biswas S. (eds) Computer Vision and Machine Intelligence in Medical Image Analysis. Advances in Intelligent Systems and Computing, vol 992. Springer, Singapore. https://doi.org/10.1007/978-981-13-8798-2_12

Article

The complete analysis is done on Towards data science .

About

Impacts of data anonymization on model prediction for diabetes

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages