Given the root
of a binary tree, return the level order traversal of its nodes' values
. (i.e., from left to right, level by level).
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[9,20],[15,7]]
Example 2:
Input: root = [1]
Output: [[1]]
Example 3:
Input: root = []
Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 2000]
. -1000 <= Node.val <= 1000
題目給定一個二元樹根結點 root。
要求實作一個演算法根據 level order 來尋訪二元樹,並回傳每個 level的結構
這題跟 199. Binary Tree Right Side View 一樣需要用 Breadth First Search 演算法來實作
使用一個 queue 來儲存每個 level 的所有 node
每次都把這個 queue 的 level 紀錄下來及為所求
如下圖
這樣等到 queue 為空時,整個tree 都走訪結束
因此時間複雜度是 O(n) ,空間複雜度也是 O(n)
class Solution {
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while(queue.size() > 0) {
int levelSize = queue.size();
List<Integer> level = new ArrayList<>();
for (int count = 0; count < levelSize; count++) {
TreeNode node = queue.poll();
if (node != null) {
level.add(node.val);
queue.add(node.left);
queue.add(node.right);
}
}
if (level.size() > 0) {
result.add(level);
}
}
return result;
}
}
- 理解二元樹 level order traversal的意思
- 理解怎麼去做 level order traversal
- Understand what problem would like to solve
- Analysis Complexity