Skip to content

Latest commit

 

History

History
116 lines (84 loc) · 3.16 KB

File metadata and controls

116 lines (84 loc) · 3.16 KB

java_binary_tree_maximum_path_sum

path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node's values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.

Examples

Example 1:

https://assets.leetcode.com/uploads/2020/10/13/exx1.jpg

Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

https://assets.leetcode.com/uploads/2020/10/13/exx2.jpg

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

Constraints:

  • The number of nodes in the tree is in the range $[1, 3*10^4]$.
  • 1000 <= Node.val <= 1000

解析

題目給了一個二元樹根結點 root

定義一個 path 的 sum 代表把在 path 上所有的結點值相加

找出一個樹的 path 所能形成最大 sum,且每個結點在路徑只能出現一次

這個問題的核心在於要如何找出最大值

透過累計的方式我們可以從 root 結點來分析

從 root 拆解出, 從root 結點分岔 + 從 root 點不分岔兩種包含 root 結點方式

而這個問題,可以用DFS 來做探訊

假設不做分岔的方法是 maxSum

累計量 accum = max(accum, root.Val + Max(maxSum(root.left) , maxSum(root.Right))

對包含 root 的樹去找 maxSum(root) = root.Val + Max(maxSum(root.left) , maxSum(root.Right) )

這樣只要走訪完整棵樹即為最大值, 時間複雜度O(n)

參考下圖

程式碼

class Solution {
  /**
   * Definition for a binary tree node.
   * public class TreeNode {
   *     int val;
   *     TreeNode left;
   *     TreeNode right;
   *     TreeNode() {}
   *     TreeNode(int val) { this.val = val; }
   *     TreeNode(int val, TreeNode left, TreeNode right) {
   *         this.val = val;
   *         this.left = left;
   *         this.right = right;
   *     }
   * }
   */
  public int maxPathSum(TreeNode root) {
    if (root == null) {
      return 0;
    }
    accumResult = root.val;
    MaxSum(root);
    return accumResult;
  }
  public int MaxSum(TreeNode root) {
    if (root == null) {
      return 0;
    }
    int leftMax = MaxSum(root.left);
    int rightMax = MaxSum(root.right);
    // leftMax = choose or not choose maximum
    leftMax = Math.max(leftMax, 0);
    rightMax = Math.max(rightMax, 0);
    // split Max = not split result  or (leftMax + root.val + rightMax)
    accumResult = Math.max(accumResult, leftMax + root.val + rightMax);
    // not split result = root.val + Max(leftMax, rightMax)
    return root.val + Math.max(leftMax, rightMax);
  }
}

困難點

  1. Understand DFS
  2. Know how to divide the question

Solve Point

  • Understand what problem to solve
  • Analysis Complexity