-
Notifications
You must be signed in to change notification settings - Fork 2.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #22699 from sergachev:cudnn_fusion
PiperOrigin-RevId: 671395864
- Loading branch information
Showing
4 changed files
with
176 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# Copyright 2024 The JAX Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import functools | ||
import jax | ||
from jax import core as jax_core | ||
from jax.interpreters import mlir | ||
from jax.interpreters.mlir import hlo | ||
from jax.interpreters.mlir import ir | ||
|
||
|
||
|
||
def _cudnn_fusion_impl(*args, jaxpr, **unused_kwargs): | ||
del unused_kwargs | ||
return jax_core.jaxpr_as_fun(jaxpr)(*args) | ||
|
||
|
||
def _custom_abstract_eval(*args, jaxpr, **unused_kwargs): | ||
del unused_kwargs | ||
del args | ||
return jaxpr.out_avals | ||
|
||
|
||
cudnn_fusion_p = jax_core.Primitive("cudnn_fusion") | ||
cudnn_fusion_p.multiple_results = True | ||
cudnn_fusion_p.def_abstract_eval(_custom_abstract_eval) | ||
cudnn_fusion_p.def_impl(_cudnn_fusion_impl) | ||
|
||
|
||
def call_cudnn_fusion(f, *args, **kwargs): | ||
"""Creates a new cudnn_fusion corresponding to calling | ||
the given function f with args and kwargs.""" | ||
jaxpr, out_shapes = jax.make_jaxpr( | ||
functools.partial(f, **kwargs), return_shape=True | ||
)(*args) | ||
flat_args = jax.tree.leaves(args) | ||
out_tree = jax.tree.structure(out_shapes) | ||
out_flat = cudnn_fusion_p.bind(*flat_args, name=f.__name__, jaxpr=jaxpr) | ||
return jax.tree.unflatten(out_tree, out_flat) | ||
|
||
|
||
def _cudnn_fusion_stablehlo_lowering( | ||
ctx, | ||
*args, | ||
name, | ||
jaxpr, | ||
): | ||
"""Make cudnn_fusion which calls the implementation function. | ||
Currently this leaks a CallOp since we're using the `core_call_lowering` | ||
function, but this should get cleaned up by DCE easily. | ||
""" | ||
impl = mlir.core_call_lowering( | ||
ctx, *args, name=name + ".impl", call_jaxpr=jaxpr | ||
) | ||
call_op = impl[0].owner | ||
called_fn = call_op.attributes["callee"] | ||
cudnn_fusion = hlo.CustomCallOp( | ||
[r.type for r in call_op.results], | ||
call_op.operands, | ||
call_target_name="__cudnn$fusion", | ||
called_computations=ir.ArrayAttr.get([called_fn]), | ||
) | ||
return cudnn_fusion.results | ||
|
||
|
||
mlir.register_lowering( | ||
cudnn_fusion_p, _cudnn_fusion_stablehlo_lowering, platform="cuda" | ||
) | ||
|
||
|
||
def cudnn_fusion(f): | ||
"""Makes a function become a cuDNN kernel. Relies on XLA's handling of | ||
custom fusions with __cudnn$fusion backend. Currently limited to GEMM | ||
fusions. For example - batch matmul with mixed types and addition: | ||
@cudnn_fusion | ||
def fn(x, y, z): | ||
return jnp.float32(jax.lax.batch_matmul(jnp.bfloat16(x), y)) + z | ||
""" | ||
return functools.partial(call_cudnn_fusion, f) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
# Copyright 2024 The JAX Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from absl.testing import absltest, parameterized | ||
from unittest import SkipTest | ||
from jax._src import test_util as jtu | ||
import jax | ||
import jax.numpy as jnp | ||
from jax._src.cudnn import cudnn_fusion | ||
|
||
|
||
jax.config.parse_flags_with_absl() | ||
|
||
|
||
class CudnnFusionTest(jtu.JaxTestCase): | ||
def setUp(self): | ||
if (not jtu.test_device_matches(["cuda"]) or | ||
not jtu.is_cuda_compute_capability_at_least("8.0")): | ||
self.skipTest("Only works on >= sm80 GPUs") | ||
super().setUp() | ||
|
||
@parameterized.parameters(["", "pmap"]) | ||
@jtu.run_on_devices("cuda") | ||
def test_cudnn_fusion(self, mode): | ||
batch_size = 2 | ||
if mode == "pmap" and jax.device_count() < batch_size: | ||
raise SkipTest("pmap test requires 2 GPUs") | ||
|
||
@cudnn_fusion | ||
def comp1(x, y, z): | ||
return jnp.float32(jax.lax.batch_matmul(jnp.bfloat16(x), y)) + z | ||
|
||
k = jax.random.key(0) | ||
s = batch_size, 16, 16 | ||
x = jnp.int8(jax.random.normal(k, shape=s)) | ||
y = jnp.bfloat16(jax.random.normal(k, shape=s)) | ||
z = jnp.float32(jax.random.normal(k, shape=s)) | ||
|
||
fn = jax.pmap(comp1) if mode == "pmap" else comp1 | ||
jitted = jax.jit(comp1) | ||
lowered = jitted.lower(x, y, z) | ||
stablehlo = lowered.as_text("stablehlo") | ||
self.assertIn("func.func private @comp1", stablehlo) | ||
self.assertIn("__cudnn$fusion", stablehlo) | ||
|
||
hlo = lowered.as_text("hlo") | ||
self.assertIn('custom_call_target="__cudnn$fusion"', hlo) | ||
self.assertIn("called_computations=", hlo) | ||
|
||
hlo_after_opt = lowered.compile().as_text() | ||
self.assertIn("kind=kCustom", hlo_after_opt) | ||
self.assertIn("plan_id", hlo_after_opt) | ||
|
||
self.assertAllClose(jitted(x, y, z), fn(x, y, z)) | ||
|
||
|
||
if __name__ == '__main__': | ||
absltest.main(testLoader=jtu.JaxTestLoader()) |