Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make the jaxpr for jnp.pad in "constant" mode more succinct. #24896

Merged
merged 1 commit into from
Nov 14, 2024

Conversation

hawkinsp
Copy link
Collaborator

Example before:

$ print(jax.jit(lambda x: jnp.pad(x, ((0, 0), (1, 0), (0, 1)), constant_values=7)).lower(jnp.ones((3,4,5))).as_text())
module @jit__lambda_ attributes {mhlo.num_partitions = 1 : i32, mhlo.num_replicas = 1 : i32} {
  func.func public @main(%arg0: tensor<3x4x5xf32>) -> (tensor<3x5x6xf32> {jax.result_info = ""}) {
    %c = stablehlo.constant dense<7> : tensor<i32>
    %0 = call @_pad(%arg0, %c) : (tensor<3x4x5xf32>, tensor<i32>) -> tensor<3x5x6xf32>
    return %0 : tensor<3x5x6xf32>
  }
  func.func private @_pad(%arg0: tensor<3x4x5xf32>, %arg1: tensor<i32>) -> tensor<3x5x6xf32> {
    %0 = stablehlo.broadcast_in_dim %arg1, dims = [] : (tensor<i32>) -> tensor<3x2xi32>
    %1 = stablehlo.convert %0 : (tensor<3x2xi32>) -> tensor<3x2xf32>
    %2 = stablehlo.slice %1 [0:1, 0:1] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %3 = stablehlo.reshape %2 : (tensor<1x1xf32>) -> tensor<f32>
    %4 = stablehlo.pad %arg0, %3, low = [0, 0, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x4x5xf32>, tensor<f32>) -> tensor<3x4x5xf32>
    %5 = stablehlo.slice %1 [0:1, 1:2] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %6 = stablehlo.reshape %5 : (tensor<1x1xf32>) -> tensor<f32>
    %7 = stablehlo.pad %4, %6, low = [0, 0, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x4x5xf32>, tensor<f32>) -> tensor<3x4x5xf32>
    %8 = stablehlo.slice %1 [1:2, 0:1] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %9 = stablehlo.reshape %8 : (tensor<1x1xf32>) -> tensor<f32>
    %10 = stablehlo.pad %7, %9, low = [0, 1, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x4x5xf32>, tensor<f32>) -> tensor<3x5x5xf32>
    %11 = stablehlo.slice %1 [1:2, 1:2] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %12 = stablehlo.reshape %11 : (tensor<1x1xf32>) -> tensor<f32>
    %13 = stablehlo.pad %10, %12, low = [0, 0, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x5x5xf32>, tensor<f32>) -> tensor<3x5x5xf32>
    %14 = stablehlo.slice %1 [2:3, 0:1] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %15 = stablehlo.reshape %14 : (tensor<1x1xf32>) -> tensor<f32>
    %16 = stablehlo.pad %13, %15, low = [0, 0, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x5x5xf32>, tensor<f32>) -> tensor<3x5x5xf32>
    %17 = stablehlo.slice %1 [2:3, 1:2] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %18 = stablehlo.reshape %17 : (tensor<1x1xf32>) -> tensor<f32>
    %19 = stablehlo.pad %16, %18, low = [0, 0, 0], high = [0, 0, 1], interior = [0, 0, 0] : (tensor<3x5x5xf32>, tensor<f32>) -> tensor<3x5x6xf32>
    return %19 : tensor<3x5x6xf32>
  }
}

After:

module @jit__lambda_ attributes {mhlo.num_partitions = 1 : i32, mhlo.num_replicas = 1 : i32} {
  func.func public @main(%arg0: tensor<3x4x5xf32>) -> (tensor<3x5x6xf32> {jax.result_info = ""}) {
    %c = stablehlo.constant dense<7> : tensor<i32>
    %0 = call @_pad(%arg0, %c) : (tensor<3x4x5xf32>, tensor<i32>) -> tensor<3x5x6xf32>
    return %0 : tensor<3x5x6xf32>
  }
  func.func private @_pad(%arg0: tensor<3x4x5xf32>, %arg1: tensor<i32>) -> tensor<3x5x6xf32> {
    %0 = stablehlo.convert %arg1 : (tensor<i32>) -> tensor<f32>
    %1 = stablehlo.pad %arg0, %0, low = [0, 1, 0], high = [0, 0, 1], interior = [0, 0, 0] : (tensor<3x4x5xf32>, tensor<f32>) -> tensor<3x5x6xf32>
    return %1 : tensor<3x5x6xf32>
  }
}

Example before:

```
$ print(jax.jit(lambda x: jnp.pad(x, ((0, 0), (1, 0), (0, 1)), constant_values=7)).lower(jnp.ones((3,4,5))).as_text())
module @jit__lambda_ attributes {mhlo.num_partitions = 1 : i32, mhlo.num_replicas = 1 : i32} {
  func.func public @main(%arg0: tensor<3x4x5xf32>) -> (tensor<3x5x6xf32> {jax.result_info = ""}) {
    %c = stablehlo.constant dense<7> : tensor<i32>
    %0 = call @_pad(%arg0, %c) : (tensor<3x4x5xf32>, tensor<i32>) -> tensor<3x5x6xf32>
    return %0 : tensor<3x5x6xf32>
  }
  func.func private @_pad(%arg0: tensor<3x4x5xf32>, %arg1: tensor<i32>) -> tensor<3x5x6xf32> {
    %0 = stablehlo.broadcast_in_dim %arg1, dims = [] : (tensor<i32>) -> tensor<3x2xi32>
    %1 = stablehlo.convert %0 : (tensor<3x2xi32>) -> tensor<3x2xf32>
    %2 = stablehlo.slice %1 [0:1, 0:1] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %3 = stablehlo.reshape %2 : (tensor<1x1xf32>) -> tensor<f32>
    %4 = stablehlo.pad %arg0, %3, low = [0, 0, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x4x5xf32>, tensor<f32>) -> tensor<3x4x5xf32>
    %5 = stablehlo.slice %1 [0:1, 1:2] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %6 = stablehlo.reshape %5 : (tensor<1x1xf32>) -> tensor<f32>
    %7 = stablehlo.pad %4, %6, low = [0, 0, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x4x5xf32>, tensor<f32>) -> tensor<3x4x5xf32>
    %8 = stablehlo.slice %1 [1:2, 0:1] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %9 = stablehlo.reshape %8 : (tensor<1x1xf32>) -> tensor<f32>
    %10 = stablehlo.pad %7, %9, low = [0, 1, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x4x5xf32>, tensor<f32>) -> tensor<3x5x5xf32>
    %11 = stablehlo.slice %1 [1:2, 1:2] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %12 = stablehlo.reshape %11 : (tensor<1x1xf32>) -> tensor<f32>
    %13 = stablehlo.pad %10, %12, low = [0, 0, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x5x5xf32>, tensor<f32>) -> tensor<3x5x5xf32>
    %14 = stablehlo.slice %1 [2:3, 0:1] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %15 = stablehlo.reshape %14 : (tensor<1x1xf32>) -> tensor<f32>
    %16 = stablehlo.pad %13, %15, low = [0, 0, 0], high = [0, 0, 0], interior = [0, 0, 0] : (tensor<3x5x5xf32>, tensor<f32>) -> tensor<3x5x5xf32>
    %17 = stablehlo.slice %1 [2:3, 1:2] : (tensor<3x2xf32>) -> tensor<1x1xf32>
    %18 = stablehlo.reshape %17 : (tensor<1x1xf32>) -> tensor<f32>
    %19 = stablehlo.pad %16, %18, low = [0, 0, 0], high = [0, 0, 1], interior = [0, 0, 0] : (tensor<3x5x5xf32>, tensor<f32>) -> tensor<3x5x6xf32>
    return %19 : tensor<3x5x6xf32>
  }
}
```

After:
```
module @jit__lambda_ attributes {mhlo.num_partitions = 1 : i32, mhlo.num_replicas = 1 : i32} {
  func.func public @main(%arg0: tensor<3x4x5xf32>) -> (tensor<3x5x6xf32> {jax.result_info = ""}) {
    %c = stablehlo.constant dense<7> : tensor<i32>
    %0 = call @_pad(%arg0, %c) : (tensor<3x4x5xf32>, tensor<i32>) -> tensor<3x5x6xf32>
    return %0 : tensor<3x5x6xf32>
  }
  func.func private @_pad(%arg0: tensor<3x4x5xf32>, %arg1: tensor<i32>) -> tensor<3x5x6xf32> {
    %0 = stablehlo.convert %arg1 : (tensor<i32>) -> tensor<f32>
    %1 = stablehlo.pad %arg0, %0, low = [0, 1, 0], high = [0, 0, 1], interior = [0, 0, 0] : (tensor<3x4x5xf32>, tensor<f32>) -> tensor<3x5x6xf32>
    return %1 : tensor<3x5x6xf32>
  }
}
```
@copybara-service copybara-service bot merged commit fcde8aa into jax-ml:main Nov 14, 2024
15 of 16 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
pull ready Ready for copybara import and testing
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants