#####Table Of Content
- Instructions
- To Do List
- POG Recipes for Moriond 2017
- How To Make PU Distribution for data
- General command
- Command to generate aQGC parametres summary from reweight cards
The package contains a code to produce ntuple for WW semileptonic final state. It takes in input ntuples produced from miniAOD with the Bacon (https://github.com/ksung25/BaconProd )
cmsrel CMSSW_8_0_26_patch1
cd CMSSW_8_0_26_patch1/src
cmsenv
git clone git@github.com:ksung25/BaconAna.git
cd BaconAna
git checkout 33ffe39
mkdir WWAnalysis
cd WWAnalysis
git clone https://github.com/ram1123/WWAnalysisRun2.git;
cd WWAnalysisRun2
git checkout bacon_80x
cd ../../
scramv1 b -j 8
python python/produceWWNtuples.py -i /store/user/lnujj/WpWm_aQGC_Ntuples_Ram/FirstStepOutput/BaconNtuples/ -n WplusToLNuWminusTo2JJJ_EWK_LO_SM_MJJ100PTJ10_TuneCUETP8M1_13TeV-madgraph-pythia8 -o WWTree_WplusToLNuWminusTo2JJJ_EWK_LO_SM_MJJ100PTJ10_TuneCUETP8M1_13TeV-madgraph-pythia8 -w 0.9114 -no 1991227 -noNeg 0 -lumi 35900.0 --ismc 1 -trig 1 -c lpc -loc 1
-
To submit the batch job (LXPLUS):
-
Go to directory:
CMSSW_8_0_26_patch1/src/WWAnalysis python WWAnalysisRun2/python/submit_on_lxbatch_MINIAODv2_MC.py python WWAnalysisRun2/python/submit_on_lxbatch_MINIAODv2_DataEle2.py python WWAnalysisRun2/python/submit_on_lxbatch_MINIAODv2_Data.py
-
-
To submit the condor job (LPC FNAL):
cd {...}/CMSSW_8_0_26_patch1/src/WWAnalysis/WWAnalysisRun2 python python/submit_on_lpcCondor_MINIAODv2.py
This will give you two files named runstep2condor.jdl
and runstep2condor.sh
. To submit the condor job do
voms-proxy-init --voms cms --valid 168:00 # if proxy was not set
condor_submit runstep2condor.jdl
Monitor the status of jobs using:
condor_q -submitter rasharma
-
To see the various options availabe with produceWWNtuples.py do,
python python/produceWWNtuples.py --help
- Clean the code
- Pile-up reweighting xsec = 69.2mb
Ref: https://twiki.cern.ch/twiki/bin/viewauth/CMS/POGRecipesICHEP2016
pileupCalc.py -i MyAnalysisJSON.txt --inputLumiJSON pileup_latest.txt --calcMode true --minBiasXsec 69200 --maxPileupBin 50 --numPileupBins 50 MyDataPileupHistogram.root
pileupCalc.py -i Cert_271036-284044_13TeV_23Sep2016ReReco_Collisions16_JSON.txt --inputLumiJSON pileup_latest.txt --calcMode true --minBiasXsec 69200 --maxPileupBin 70 --numPileupBins 70 MyDataPileupHistogram.root
where,
- MyAnalysisJSON.txt is the JSON file we are using.
- pileup_latest.txt : this is input json file. It can be found at link: /afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions15/13TeV/PileUp/pileup_latest.txt
Reference: https://twiki.cern.ch/twiki/bin/viewauth/CMS/PileupJSONFileforData#Pileup_JSON_Files_For_Run_II
grep "time to run this code =" *.stdout | awk '{print $10,$7/60}'
voms-proxy-init
grep -r --exclude=\*.{root,o,exe,swp,bcup} genGravMass *
dasgoclient --query="dataset=/*/RunIISpring16MiniAOD*/MINIAODSIM" --limit=0
There is a script to check many samples at once. Script name is DasGoClientSummary.py
.
-
Check if it runs fine:
grep "Job Nubmer" <LogFileName>
Lets say you are checking this for N samples. Then it should have all numbers from 1 to N.
-
Grab dataset name using this command:
grep Dataset screenlog.0 | awk -F "/" '{print $2,"\t",$3}'
-
Grab number of events using command:
grep nevents screenlog.0 | awk -F "," '{print $3}' | awk -F ":" '{print $2}'
-
To investigate we can paste output of step 2 and 3 in spreadsheet and look at it.
grep launch aQGC_WMhadZlepJJ_EWK_LO_NPle1_mjj100pt10_reweight_card.dat | awk -F "=" '{print $2}' | awk -F "_" '{ gsub("p",".",$2); gsub("m","-",$2); print $1,$2}'
grep launch aQGC_WMhadZlepJJ_EWK_LO_NPle1_mjj100pt10_reweight_card.dat | awk -F "=" '{print $2}' | awk -F "_" '{ gsub("p",".",$2); gsub("m","-",$2); print $1}'
grep launch aQGC_WMhadZlepJJ_EWK_LO_NPle1_mjj100pt10_reweight_card.dat | awk -F "=" '{print $2}' | awk -F "_" '{ gsub("p",".",$2); gsub("m","-",$2); print $2}'