This repository contains two tensorflow models namely Stacked Autoencoders and Deep Belief Network.
There are various variants of both networks.
The links to the dataset are here.
Download all the files
Clone this repository and open the desired algorithm in any text editor to access settings
Change the path of the files
df = pd.read_csv('/home/jay/Documents/Project/incomplete_project/DBNKDD/dataset/NSL-KDD_Processed/Kdd_Test_41.csv') # test set
er = pd.read_csv('/home/jay/Documents/Project/incomplete_project/DBNKDD/dataset/NSL-KDD_Processed/NSL_TestLabels_mat5.csv') # test labels
ad = pd.read_csv('/home/jay/Documents/Project/incomplete_project/DBNKDD/dataset/NSL-KDD_Processed/Kdd_Train_41.csv') # train set
qw = pd.read_csv('/home/jay/Documents/Project/incomplete_project/DBNKDD/dataset/NSL-KDD_Processed/NSL_TrainLabels_mat5.csv') # train labels
tr = pd.read_csv('/home/jay/Documents/Project/incomplete_project/DBNKDD/dataset/NSL-KDD_Processed/Kdd_Valid_41.csv') # valid set
yu = pd.read_csv('/home/jay/Documents/Project/incomplete_project/DBNKDD/dataset/NSL-KDD_Processed/NSL_ValidLabels_int3.csv') # valid labels
rt = pd.read_csv('/home/jay/Documents/Project/incomplete_project/DBNKDD/dataset/NSL-KDD_Processed/NSL_TrainLabels_int.csv')
t = pd.read_csv('/home/jay/Documents/Project/incomplete_project/DBNKDD/dataset/NSL-KDD_Processed/NSL_TestLabels_int.csv')
You can also hard code the parameters as well as you can input them when you run the program
pre_learning_rate = float(input("Please input the Pretraining learning rate(should be between 0 and 1) : "))
pre_training_epochs = int(input("Please input the Pretraining epochs(more >> better) : "))
pre_batch_size = int(input("Please input the Pretraining batch size(lower >> better) : "))
display_step = 1
Also you can change the network architecture
pre_n_hidden_1 = int(input("\nPlease input the Pretraing network's Hidden layer 1'st Neurons : ")) # 1st layer num features
pre_n_hidden_2 = int(input("Please input the Pretraing network's Hidden layer 2'nd Neurons : "))# 2nd layer num features
pre_n_hidden_3 = int(input("Please input the Pretraing network's Hidden layer 3'rd Neurons : "))
pre_n_hidden_4 = int(input("Please input the Pretraing network's Hidden layer 4'th Neurons : "))
pre_n_input = 41