Skip to content

This repository implements some of the Machine Learning Algorithms.

License

Notifications You must be signed in to change notification settings

jiajunhe98/Machine-Learning-Algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning Algorithms

This repository implements some Classical machine learning algorithms in Python (with NumPy and SciPy).

Comments and discussion are always highly appreciated :)

Algorithms implemented:

Supervised Learning

  • k-NN
  • Perceptron
  • Classification Decision Tree (ID3/C4.5)
  • Classification Tree (CART Algorithm)
  • Regression Tree (CART Algorithm)
  • Support Vector Machine (SMO Algorithm)
  • Feedforward Neural Network (MLP)

Unsupervised Learning

  • KMeans Clustering
  • Gaussian Mixture Model Clustering (by EM algorithms/Gibbs Sampling/Variational Inference)(More methods can be found in this repository)
  • Hierarchical Clustering (implementing multiple distances: Euclidean/Minkowski/Manhattan/Chebyshev/Manhalanobis/Correlation/Cosine)
  • Principle Component Analysis
  • Kernel PCA
  • Factor Analysis(Linear Gaussian Model with anisotropic variances)
  • Probabilistic PCA(Number of PCs are automatically determined by ARD prior)
  • PPCA by Pyro(Illustrated in Jupyter Notebook)


机器学习算法

该仓库实现了一些经典的机器学习算法, 欢迎讨论和批评指正!

算法清单:

监督学习

  • k近邻
  • 感知机
  • 分类决策树(ID3/C4.5)
  • 分类树(CART算法)
  • 回归树(CART算法)
  • 支持向量机(SMO算法)
  • 前馈神经网络(MLP)

无监督学习

  • K均值聚类
  • 高斯混合模型聚类(利用EM算法/Gibbs采样/变分推断)(更多方法见此仓库)
  • 层次聚类(实现多种距离:欧氏距离/闵可夫斯基距离/曼哈顿距离/切比雪夫距离/马哈拉诺比斯距离/相关系数相似度/余弦相似度)
  • 主成分分析
  • 核主成分分析
  • 因子分析(各向异性方差线性高斯模型)
  • 概率主成分分析(利用ARD先验自动确定主成分数量)
  • Pyro实现的概率主成分分析(Jupyter Notebook)




About

This repository implements some of the Machine Learning Algorithms.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published