Jia Qin, Youyi Zheng, and Kun Zhou. 2022. Motion In-betweening via Two-stage Transformers. ACM Trans. Graph. 41, 6, Article 184 (December 2022), 16 pages. https://doi.org/10.1145/3550454.3555454
-
下载 LAFAN1 数据集.
-
解压
lafan1.zip
到datasets
文件夹. Bvh 文件应放在motion_inbetweening/datasets/lafan1
文件夹下. -
从Release页面下载 预训练模型. 解压到
motion_inbetweening/experiments
文件夹. -
安装 PyTorch. 代码在 Python3.8, PyTorch-1.8.2 测试过.
在 scripts
文件夹下, 运行 python run_baseline_benchmark.py lafan1_context_model
这会给你 Robust Motion In-betweening (Harvey et al., 2020) 论文中展示的相同的 baseline 结果. 如果 LAFAN1 数据集适当地设置, 你将期望看到下面的结果:
trans: 5
zerov_pos: 1.5231, zerov_quat: 0.56, zerov_npss: 0.0053
inter_pos: 0.3729, inter_quat: 0.22, inter_npss: 0.0023
trans: 15
zerov_pos: 3.6946, zerov_quat: 1.10, zerov_npss: 0.0522
inter_pos: 1.2489, inter_quat: 0.62, inter_npss: 0.0391
trans: 30
zerov_pos: 6.6005, zerov_quat: 1.51, zerov_npss: 0.2318
inter_pos: 2.3159, inter_quat: 0.98, inter_npss: 0.2013
trans: 45
zerov_pos: 9.3293, zerov_quat: 1.81, zerov_npss: 0.4918
inter_pos: 3.4471, inter_quat: 1.25, inter_npss: 0.4493
To use the full method (Detail + Context Transformer) to generate in-betweening, run eval_detail_model.py
.
Usage:
usage: eval_detail_model.py [-h] [-s DATASET] [-i INDEX] [-t TRANS] [-d] [-p] det_config ctx_config
Evaluate detail model. No post-processing applied by default.
positional arguments:
det_config detail config name
ctx_config context config name
optional arguments:
-h, --help show this help message and exit
-s DATASET, --dataset DATASET
dataset name (default=benchmark)
-i INDEX, --index INDEX
data index
-t TRANS, --trans TRANS
transition length (default=30)
-d, --debug debug mode
-p, --post_processing
apply post-processing
Examples:
-
Get benchmark stats on LAFAN1 dataset with transition=5 frames:
python eval_detail_model.py lafan1_detail_model lafan1_context_model -t 5
You are expected to see the same stats shown in our paper:
trans 5: gpos: 0.1049, gquat: 0.0994, npss: 0.0011
Try other transition lengths and you should get:
trans 15: gpos: 0.3943, gquat: 0.2839, npss: 0.0188 trans 30: gpos: 0.8948, gquat: 0.5446, npss: 0.1124 trans 45: gpos: 1.6777, gquat: 0.8727, npss: 0.3217
-
Generate 30 transition frames based on the clip with index=100 in LAFAN1 benchmark dataset:
python eval_detail_model.py lafan1_detail_model lafan1_context_model -t 30 -i 100
You should get the generated transition and the corresponding ground truth in JSON format under the
scripts
folder:lafan1_detail_model_constraints_benchmark_30_100.json lafan1_detail_model_constraints_benchmark_30_100_gt.json
If you prefer to use only Context Transformer, run eval_context_model.py
. Its usage is very similar to eval_detail_model.py
. Run python eval_context_model.py -h
to see its usage info.
Examples:
-
Get benchmark stats on LAFAN1 dataset with transition=5 frames.
Context Transformer only, WITHOUT post-processing:
python eval_context_model.py lafan1_context_model -t 5
trans 5: gpos: 0.1717, gquat: 0.1325, npss: 0.0015
Results of other transition lengths:
trans 15: gpos: 0.4923, gquat: 0.3287, npss: 0.0212 trans 30: gpos: 1.0663, gquat: 0.5991, npss: 0.1238 trans 45: gpos: 1.9972, gquat: 0.9170, npss: 0.3369
Context Transformer only, WITH post-processing:
python eval_context_model.py lafan1_context_model -t 5 -p
trans 5: gpos: 0.1288, gquat: 0.1143, npss: 0.0015 (w/ post-processing)
Results of other transition lengths:
trans 15: gpos: 0.4623, gquat: 0.3154, npss: 0.0211 (w/ post-processing) trans 30: gpos: 1.0354, gquat: 0.5898, npss: 0.1210 (w/ post-processing) trans 45: gpos: 1.9439, gquat: 0.9114, npss: 0.3349 (w/ post-processing)
-
Generate 30 transition frames based on the clip with index=100 in LAFAN1 benchmark dataset with post-processing:
python eval_context_model.py lafan1_context_model -t 30 -i 100 -p
You should get the predicted transition and the ground truth in JSON format under the
scripts
folder:lafan1_context_model_constraints_benchmark_30_100.json lafan1_context_model_constraints_benchmark_30_100_gt.json
Use the visualize
function in motion_inbetween.visualization.maya
module to load motions in JSON format:
If you want to train the models by yourself, install visdom to visualize training statistics.
pip install visdom
Launch visdom local server before training starts:
$ visdom
Checking for scripts.
It's Alive!
First train the Context Transformer by running train_context_model.py
.
usage: train_context_model.py [-h] config
Train context model.
positional arguments:
config config name
optional arguments:
-h, --help show this help message and exit
Example:
python train_context_model.py lafan1_context_model
Then train Detail Transformer by running train_detail_model.py
.
usage: train_detail_model.py [-h] det_config ctx_config
Train detail model.
positional arguments:
det_config detail config name
ctx_config context config name
optional arguments:
-h, --help show this help message and exit
Example:
python train_detail_model.py lafan1_detail_model lafan1_context_model