Skip to content

Inferring black hole properties from learned representations of multi-filter AGN light curves

License

Notifications You must be signed in to change notification settings

jiwoncpark/magnify

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mAGNify - Prediction of black hole properties from learned representations of LSST-like multivariate time series of AGN

Joint reconstruction and parameter regression experiments

Installation

$pip install -e .

Models available

  1. Attentive neural process (Kim et al 2018)
$python magnify/train_anp.py
  1. Latent ODE (Rubanova et al 2019)
  • Toy dataset of 1d periodic functions with varying frequency
$python magnify/train_latent_ode.py --niters 600 -n 1000 -s 50 -l 10 --dataset periodic --latent-ode --noise-weight 0.01 --regress
  • Mock AGN light curves, simulated using the damped random walk model
$python magnify/train_latent_ode.py --batch-size 60 --niters 50 -n 10000 -l 20 --dataset drw --latent-ode --regress
  1. Latent SDE (Li et al 2020)
  • Single mock AGN light curve, simulated using the damped random walk model
$pip install torchsde
$python magnify/train_latent_sde_param_pred.py

About

Inferring black hole properties from learned representations of multi-filter AGN light curves

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages