Skip to content

Commit

Permalink
Merge branch 'main' into weak-ext-ext
Browse files Browse the repository at this point in the history
  • Loading branch information
jonalfcam authored Sep 21, 2023
2 parents 66e9512 + 2b58f39 commit 3edd7e6
Show file tree
Hide file tree
Showing 5 changed files with 339 additions and 23 deletions.
1 change: 1 addition & 0 deletions mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ nav:
- Covariantly Functorial Type Families: simplicial-hott/08-covariant.rzk.md
- The Yoneda Lemma: simplicial-hott/09-yoneda.rzk.md
- Rezk Types: simplicial-hott/10-rezk-types.rzk.md
- Adjunctions: simplicial-hott/11-adjunctions.rzk.md
- Cocartesian Families: simplicial-hott/12-cocartesian.rzk.md

markdown_extensions:
Expand Down
54 changes: 35 additions & 19 deletions src/hott/03-equivalences.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -448,32 +448,48 @@ identifications. This defines `#!rzk eq-htpy` to be the retraction to
Using function extensionality, a fiberwise equivalence defines an equivalence of
dependent function types.

```rzk
#def is-equiv-function-is-equiv-family uses (funext)
( X : U)
( A B : X → U)
( f : (x : X) → (A x) → (B x))
( famisequiv : (x : X) → is-equiv (A x) (B x) (f x))
: is-equiv ((x : X) → A x) ((x : X) → B x) ( \ a x → f x (a x))
:=
( ( ( \ b x → first (first (famisequiv x)) (b x)) ,
( \ a →
eq-htpy
X A
( \ x →
first
( first (famisequiv x))
( f x (a x)))
( a)
( \ x → second (first (famisequiv x)) (a x)))) ,
( ( \ b x → first (second (famisequiv x)) (b x)) ,
( \ b →
eq-htpy
X B
( \ x →
f x (first (second (famisequiv x)) (b x)))
( b)
( \ x → second (second (famisequiv x)) (b x)))))
```

```rzk
#def equiv-function-equiv-family uses (funext)
( X : U)
( A B : X → U)
( famequiv : (x : X) → Equiv (A x) (B x))
: Equiv ((x : X) → A x) ((x : X) → B x)
:=
( ( \ a x → first (famequiv x) (a x)) ,
( ( ( \ b x → first (first (second (famequiv x))) (b x)) ,
( \ a →
eq-htpy
X A
( \ x →
first
( first (second (famequiv x)))
( first (famequiv x) (a x)))
( a)
( \ x → second (first (second (famequiv x))) (a x)))) ,
( ( \ b x → first (second (second (famequiv x))) (b x)) ,
( \ b →
eq-htpy
X B
( \ x →
first (famequiv x) (first (second (second (famequiv x))) (b x)))
( b)
( \ x → second (second (second (famequiv x))) (b x))))))
( ( \ a x → (first (famequiv x)) (a x)) ,
( is-equiv-function-is-equiv-family
( X)
( A)
( B)
( \ x ax → first (famequiv x) (ax))
( \ x → second (famequiv x))))
```

## Embeddings
Expand Down
32 changes: 28 additions & 4 deletions src/simplicial-hott/08-covariant.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,18 @@ unique lift with specified domain.
:= ( Σ (C : (A → U)) , is-covariant A C)
```

The notion of a covariant family is stable under substitution into the base.

```rzk title="RS17, Remark 8.3"
#def is-covariant-substitution-is-covariant
( A B : U)
( C : A → U)
( is-covariant-C : is-covariant A C)
( g : B → A)
: is-covariant B (\ b → C (g b))
:= \ x y f u → is-covariant-C (g x) (g y) (ap-hom B A g x y f) u
```

The notion of having a unique lift with a fixed domain may also be expressed by
contractibility of the type of extensions along the domain inclusion into the
1-simplex.
Expand Down Expand Up @@ -496,7 +508,7 @@ Finally, we see that covariant hom families in a Segal type are covariant.
(A : U)
(is-segal-A : is-segal A)
(a : A)
: is-covariant A (\ x → hom A a x)
: is-covariant A (hom A a)
:= is-segal-representable-dhom-from-contractible A is-segal-A a
```

Expand Down Expand Up @@ -830,9 +842,9 @@ is covariant as shown above. Transport of an `e : C x` along an arrow

```

We show that for each `v : C y`, the map `covariant-uniqueness` is an equivalence.
This follows from the fact that the total spaces (summed over `v : C y`)
of both sides are contractible.
We show that for each `v : C y`, the map `covariant-uniqueness` is an
equivalence. This follows from the fact that the total spaces (summed over
`v : C y`) of both sides are contractible.

```rzk title="RS17, Lemma 8.15"
#def is-equiv-total-map-covariant-uniqueness-curried
Expand Down Expand Up @@ -1125,6 +1137,18 @@ has a unique lift with specified codomain.
:= ( Σ (C : A → U) , is-contravariant A C)
```

The notion of a contravariant family is stable under substitution into the base.

```rzk title="RS17, Remark 8.3, dual form"
#def is-contravariant-substitution-is-contravariant
( A B : U)
( C : A → U)
( is-contravariant-C : is-contravariant A C)
( g : B → A)
: is-contravariant B (\ b → C (g b))
:= \ x y f v → is-contravariant-C (g x) (g y) (ap-hom B A g x y f) v
```

The notion of having a unique lift with a fixed codomain may also be expressed
by contractibility of the type of extensions along the codomain inclusion into
the 1-simplex.
Expand Down
38 changes: 38 additions & 0 deletions src/simplicial-hott/09-yoneda.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -209,6 +209,25 @@ This is proven combining the previous steps.
( evid-yon A is-segal-A a C is-covariant-C)))
```

For later use, we observe that the same proof shows that the inverse map is an
equivalence.

```rzk
#def inv-yoneda-lemma uses (funext)
( A : U)
( is-segal-A : is-segal A)
( a : A)
( C : A → U)
( is-covariant-C : is-covariant A C)
: is-equiv (C a) ((z : A) → hom A a z → C z)
( yon A is-segal-A a C is-covariant-C)
:=
( ( ( evid A a C) ,
( evid-yon A is-segal-A a C is-covariant-C)) ,
( ( evid A a C) ,
( yon-evid A is-segal-A a C is-covariant-C)))
```

## Naturality

The equivalence of the Yoneda lemma is natural in both $a : A$ and $C : A → U$.
Expand Down Expand Up @@ -557,6 +576,25 @@ equivalence.
( contra-evid-yon A is-segal-A a C is-contravariant-C)))
```

For later use, we observe that the same proof shows that the inverse map is an
equivalence.

```rzk
#def inv-contra-yoneda-lemma uses (funext)
( A : U)
( is-segal-A : is-segal A)
( a : A)
( C : A → U)
( is-contravariant-C : is-contravariant A C)
: is-equiv (C a) ((z : A) → hom A z a → C z)
( contra-yon A is-segal-A a C is-contravariant-C)
:=
( ( ( contra-evid A a C) ,
( contra-evid-yon A is-segal-A a C is-contravariant-C)) ,
( ( contra-evid A a C) ,
( contra-yon-evid A is-segal-A a C is-contravariant-C)))
```

## Contravariant Naturality

The equivalence of the Yoneda lemma is natural in both $a : A$ and $C : A → U$.
Expand Down
Loading

0 comments on commit 3edd7e6

Please sign in to comment.