Feature engineering done with Polars
pip install feature-engineering-polars
import polars as pl
from fe_polars.imputing.base_imputing import Imputer
from fe_polars.encoding.target_encoding import TargetEncoder
dataframe = pl.DataFrame(
{
"City": ["A", "A", "B", "B", "B", "C", "C", "C"],
"Rain": [103, None, 90, 75, None, 200, 155, 127],
"Temperature": [30.5, 32, 25, 38, 40, 29.6, 21.3, 24.9],
}
)
imputer = Imputer(features_to_impute=["Rain"], strategy="mean")
encoder = TargetEncoder(smoothing=2, features_to_encode=["City"])
temp = imputer.fit_transform(x=dataframe)
encoder.fit_transform(x=temp, y=dataframe['Temperature'])
shape: (8, 3)
City Temperature Rain
f64 f64 f64
30.706 30.5 103.0
30.706 32.0 125.0
32.665 25.0 90.0
32.665 38.0 75.0
32.665 40.0 125.0
27.225 29.6 200.0
27.225 21.3 155.0
27.225 24.9 127.0
- Encoding:
- Target encoding
- One hot encoding
- Imputing:
- Base imputing:
- Mean imputing
- Median imputing
- Max imputing
- Min imputing
- Fixed value imputing
- Base imputing: