- Official repository for NBsTem (NBsTem_Tm & NBsTem_Q), deep learning models for nanobody thermostability prediction, as described in NBsTem paper.
- You can also access NBsTem Webserver for more.
- Since the nanobody Tm prediction task, NBsTem Webserver deployed the [AntiBERTy+CNN] model.
- Therefore, we provide the source code of running the NBsTem_Tm[ProtT5+CNN] model here.
Clone this repository and install the package locally:
$ git clone git@github.com:jourmore/NBsTem.git
$ cd NBsTem_local
$ pip install -r requirements.txt
python app.py -i in.fasta
python app.py -t QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKEREGVATILGGSTYYGDSVKGRFTISQDNAKNTVYLQMNSLKPEDTAIYYCAGSTVASTGWCSRLRPYDYHYRGQGTQVTVSS
*usage: python app.py [-h] [-i I] [-o O] [-t T] [-seed SEED] [-device DEVICE]
optional arguments:
-h, --help show this help message and exit
-i I Input path with fasta format. [Such as: ./in.fasta]
-o O Output file name when input is fasta format. [Default: "Output-NBsTem-[Year]-[Month]-[Day].csv"
-t T Input one sequecne with text format. [Default:
QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKEREGVATILGGSTYYGDSVKGRFTISQDNAKNTVYLQMNSLKPEDTAIYYCAGSTVASTGWCSRLRPYDYHYRGQGTQVTVSS]
-seed SEED Random seed for torch, numpy, os. [Default: 42]
-device DEVICE Device: cpu, cuda. [Default: auto]
- Example (Using default parameters and example sequences):
python app.py
- Terminal output message:
******************************************************************
** **
** NBsTem v.2024 Thermostability prediction for Nanobody/VHH. **
** **
** http://www.nbscal.online/ **
** maojun@stu.scu.edu.cn **
******************************************************************
*./Rostlab/prot_t5_xl_uniref50 exists, and it will be automatically loaded.
== 1.Use seed: 42
== 2.Device: cuda
== 3.Loading antibody language model: AntiBERTy + MS-ResLSTM
== 4.Loading protein language model: ProtT5_XL_UniRef50 + CNN
== 5.Begin to predict: Tm, Qclass, Specie and Chain
** Calculating Specie and Chain [Fast]
** Calculating Tm:: 100%|█████████████████████| 1/1 [00:01<00:00, 1.48s/it]
** Calculating Qclass:: 100%|█████████████████| 1/1 [00:00<00:00, 2.54it/s]
== 6.Finish ! The results are shown below or you can check file [NBsTem-2024-12-13.csv]
ID Tm Qclass Specie Sequence
1 Nanobody 67.32 4 Camel QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKERE...
2 Nanobody 67.32 4 Camel QVQLVESGGGSVQAGGSLRLSCAASGYTVSTYCMGWFRQAPGKERE...
...
-
NBsTem_Tm: To use ProtT5_XL_UniRef50 to generate sequence embeddings, and CNN deep learning framework to training model.
-
NBsTem_Q: To use AntiBERTy to generate sequence embeddings, and MS-ResLSTM deep learning framework to training model.
@article{...,
title = {NBsTem: ...},
author = {Jourmore...},
journal = {...},
year= {2024}
}