Skip to content

Latest commit

 

History

History
executable file
·
851 lines (701 loc) · 30.5 KB

api-client.md

File metadata and controls

executable file
·
851 lines (701 loc) · 30.5 KB
copyright lastupdated subcollection
years
2015, 2020
2020-08-19
assistant

{:curl: .ph data-hd-programlang='curl'} {:javascript: .ph data-hd-programlang='javascript'} {:java: .ph data-hd-programlang='java'} {:python: .ph data-hd-programlang='python'} {:swift: data-hd-programlang='swift'} {:new_window: target="_blank"} {:external: target="_blank" .external} {:shortdesc: .shortdesc} {:screen: .screen} {:pre: .pre} {:codeblock: .codeblock} {:download: .download} {:deprecated: .deprecated} {:important: .important} {:note: .note} {:tip: .tip}

Building a client application

{: #api-client}

So you have a working dialog skill and an assistant that uses it. Now you want to develop a custom client application that will interact with your users and communicate with the {{site.data.keyword.conversationfull}} service. {: shortdesc}

Setting up the {{site.data.keyword.conversationshort}} service

{: #api-client-setup}

The example application we will create in this section implements several functions of a cognitive personal assistant. The application code will connect to a {{site.data.keyword.conversationshort}} assistant, where the cognitive processing (such as the detection of user intents) takes place.

Before continuing with this example, you need to set up the required assistant:

  1. Download the dialog skill JSON file.
  2. Import the skill into an instance of the {{site.data.keyword.conversationshort}} service.
  3. Create an assistant and connect the skill you imported.

Getting service information

{: #api-client-get-info}

To access the {{site.data.keyword.conversationshort}} service REST APIs, your application needs to be able to authenticate with {{site.data.keyword.Bluemix}} and connect to the right assistant. You'll need to copy the service credentials and assistant ID and paste them into your application code.

To access the service credentials and the assistant ID from the {{site.data.keyword.conversationshort}} tool, go to the Assistants tab and click the Menu menu for the assistant you want to connect to. Select View API Details to see the details for the assistant, including the assistant ID and API key.

You can also access the service credentials from your {{site.data.keyword.Bluemix_short}} dashboard.

Communicating with the {{site.data.keyword.conversationshort}} service

{: #api-client-communicate}

Interacting with the {{site.data.keyword.conversationshort}} service is simple. Let's take a look at an example that connects to the service, sends a single message, and prints the output to the console:

// Example 1: sets up service wrapper, sends initial message, and
// receives response.

const AssistantV2 = require('ibm-watson/assistant/v2');
const { IamAuthenticator } = require('ibm-watson/auth');

// Set up Assistant service wrapper.
const service = new AssistantV2({
  version: '2019-02-28',
  authenticator: new IamAuthenticator({
    apikey: '{apikey}', // replace with API key
  })
});

const assistantId = '{assistant_id}'; // replace with assistant ID
let sessionId;

// Create session.
service
  .createSession({
    assistantId,
  })
  .then(res => {
    sessionId = res.result.session_id;
    sendMessage({
      messageType: 'text',
      text: '', // start conversation with empty message
    });
  })
  .catch(err => {
    console.log(err); // something went wrong
  });

// Send message to assistant.
function sendMessage(messageInput) {
  service
    .message({
      assistantId,
      sessionId,
      input: messageInput
    })
    .then(res => {
      processResponse(res.result);
    })
    .catch(err => {
      console.log(err); // something went wrong
    });
}

// Process the response.
function processResponse(response) {
  // Display the output from assistant, if any. Supports only a single
  // text response.
  if (response.output.generic) {
    if (response.output.generic.length > 0) {
      if (response.output.generic[0].response_type === 'text') {
        console.log(response.output.generic[0].text);
      }
    }
  }


// We're done, so we close the session.
service
  .deleteSession({
    assistantId,
    sessionId,
  })
  .catch(err => {
    console.log(err); // something went wrong
  });
}

{: codeblock} {: javascript}

# Example 1: sets up service wrapper, sends initial message, and
# receives response.

from ibm_watson import AssistantV2
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator

# Set up Assistant service.
authenticator = IAMAuthenticator('{apikey}') # replace with API key
service = AssistantV2(
    version = '2019-02-28',
    authenticator = authenticator
)

assistant_id = '{assistant_id}' # replace with assistant ID

# Create session.
session_id = service.create_session(
    assistant_id = assistant_id
).get_result()['session_id']

# Start conversation with empty message.
response = service.message(
    assistant_id,
    session_id
).get_result()

# Print the output from dialog, if any. Supports only a single
# text response.
if response['output']['generic']:
    if response['output']['generic'][0]['response_type'] == 'text':
        print(response['output']['generic'][0]['text'])

# We're done, so we delete the session.
service.delete_session(
    assistant_id = assistant_id,
    session_id = session_id
)

{: codeblock} {: python}

/*
 * Example 1: sets up service wrapper, sends initial message, and
 * receives response.
 */

import com.ibm.watson.assistant.v2.Assistant;
import com.ibm.watson.assistant.v2.model.CreateSessionOptions;
import com.ibm.watson.assistant.v2.model.DeleteSessionOptions;
import com.ibm.watson.assistant.v2.model.RuntimeResponseGeneric;
import com.ibm.watson.assistant.v2.model.MessageOptions;
import com.ibm.watson.assistant.v2.model.MessageResponse;
import com.ibm.watson.assistant.v2.model.SessionResponse;
import com.ibm.cloud.sdk.core.security.Authenticator;
import com.ibm.cloud.sdk.core.security.IamAuthenticator;
import java.util.List;
import java.util.logging.LogManager;

public class AssistantSimpleExample {
  public static void main(String[] args) {

    // Suppress log messages in stdout.
    LogManager.getLogManager().reset();

    // Set up Assistant service.
    Authenticator authenticator = new IamAuthenticator("{apikey}"); // replace with API key
    Assistant service = new Assistant("2019-02-28", authenticator);
    String assistantId = "{assistant_id}"; // replace with assistant ID

    // Create session.
    CreateSessionOptions createSessionOptions = new CreateSessionOptions.Builder(assistantId).build();
    SessionResponse session = service.createSession(createSessionOptions).execute().getResult();
    String sessionId = session.getSessionId();

    // Start conversation with empty message.
    MessageOptions messageOptions = new MessageOptions.Builder(assistantId,
                                                        sessionId).build();
    MessageResponse response = service.message(messageOptions).execute().getResult();

    // Print the output from dialog, if any. Assumes a single text response.
      List<RuntimeResponseGeneric> responseGeneric = response.getOutput().getGeneric();
      if(responseGeneric.size() > 0) {
        if(responseGeneric.get(0).responseType().equals("text")) {
          System.out.println(responseGeneric.get(0).text());
        }
      }
    // We're done, so we delete the session.
    DeleteSessionOptions deleteSessionOptions = new DeleteSessionOptions.Builder(assistantId, sessionId).build();
    service.deleteSession(deleteSessionOptions).execute();
  }
}

{: codeblock} {: java}

The first step is to create a wrapper for the {{site.data.keyword.conversationshort}} service.

The wrapper is an object you will use to send input to, and receive output from, the service. When you create the service wrapper, specify the authentication credentials from the service key, as well as the version of the {{site.data.keyword.conversationshort}} API you are using.

In this Node.js example, the wrapper is an instance of AssistantV2, stored in the variable service. The Watson SDKs for other languages provide equivalent mechanisms for instantiating a service wrapper. {: javascript}

In this Python example, the wrapper is an instance of watson_developer_cloud.AssistantV2, stored in the variable service. The Watson SDKs for other languages provide equivalent mechanisms for instantiating a service wrapper. {: python}

In this Java example, the wrapper is an instance of Assistant, stored in the variable service. The Watson SDKs for other languages provide equivalent mechanisms for instantiating a service wrapper. {: java}

After creating the service wrapper, we use it to create a session and send a message to the assistant. In this example, the message is empty; we just want to trigger the conversation_start node in the dialog, so we don't need any input text. We then print the response text to the console, and finally we delete the session.

Use the node <filename.js> command to run the example application. {: javascript}

Use the python3 <filename.py> command to run the example application. {: python}

Paste the example code into a file named AssistantSimpleExample.java. You can then compile and run it. {: java}

Note: Make sure you have installed the Watson SDK for Node.js using npm install ibm-watson. {: javascript}

Note: Make sure you have installed the Watson SDK for Python using pip install --upgrade ibm-watson or easy_install --upgrade ibm-watson. {: python}

Note: Make sure you have installed the Watson SDK for Java{: external}. {: java}

Assuming everything works as expected, the assistant returns the output from the dialog, which is then printed to the console:

Welcome to the Watson Assistant example!

{: screen}

This output tells us that we have successfully communicated with the {{site.data.keyword.conversationshort}} service and received the welcome message specified by the conversation_start node in the dialog. Now we can add a user interface, making it possible to process user input.

Processing user input to detect intents

{: #api-client-process-input}

To be able to process user input, we need to add a user interface to our client application. For this example, we'll keep things simple and use standard input and output. We can use the Node.js prompt-sync module to do this. (You can install prompt-sync using npm install prompt-sync.) We can use the Python 3 input function to do this. We can use the Java Console.readLine() function to do this.

// Example 2: adds user input and detects intents.

const prompt = require('prompt-sync')();
const AssistantV2 = require('ibm-watson/assistant/v2');
const { IamAuthenticator } = require('ibm-watson/auth');

// Set up Assistant service wrapper.
const service = new AssistantV2({
  version: '2019-02-28',
  authenticator: new IamAuthenticator({
    apikey: '{apikey}', // replace with API key
  })
});

const assistantId = '{assistant_id}'; // replace with assistant ID
let sessionId;

// Create session.
service
  .createSession({
    assistantId,
  })
  .then(res => {
    sessionId = res.result.session_id;
    sendMessage({
      messageType: 'text',
      text: '',
    }); // start conversation with empty message
  })
  .catch(err => {
    console.log(err); // something went wrong
  });

// Send message to assistant.
function sendMessage(messageInput) {
  service
    .message({
      assistantId,
      sessionId,
      input: messageInput,
    })
    .then(res => {
      processResponse(res.result);
    })
    .catch(err => {
      console.log(err); // something went wrong
    });
}

// Process the response.
function processResponse(response) {

  // If an intent was detected, log it out to the console.
  if (response.output.intents.length > 0) {
    console.log('Detected intent: #' + response.output.intents[0].intent);
  }

  // Display the output from assistant, if any. Supports only a single
  // text response.
  if (response.output.generic) {
    if (response.output.generic.length > 0) {
      if (response.output.generic[0].response_type === 'text') {
        console.log(response.output.generic[0].text);
      }
    }
  }

  // Prompt for the next round of input.
  const newMessageFromUser = prompt('>> ');
  if (newMessageFromUser === 'quit') {
    service
      .deleteSession({
        assistantId,
        sessionId,
      })
      .catch(err => {
        console.log(err); // something went wrong
      });
    return;
  }
  newMessageInput = {
    messageType: 'text',
    text: newMessageFromUser,
  }
  sendMessage(newMessageInput);
}

{: codeblock} {: javascript}

# Example 2: adds user input and detects intents.

from ibm_watson import AssistantV2
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator

# Set up Assistant service.
authenticator = IAMAuthenticator('{apikey}') # replace with API key
service = AssistantV2(
    version = '2019-02-28',
    authenticator = authenticator
)

assistant_id = '{assistant_id}' # replace with assistant ID

# Create session.
session_id = service.create_session(
    assistant_id = assistant_id
).get_result()['session_id']

# Initialize with empty value to start the conversation.
message_input = {
    'message_type:': 'text',
    'text': ''
    }

# Main input/output loop
while message_input['text'] != 'quit':

    # Send message to assistant.
    response = service.message(
        assistant_id,
        session_id,
        input = message_input
    ).get_result()

    # If an intent was detected, print it to the console.
    if response['output']['intents']:
        print('Detected intent: #' + response['output']['intents'][0]['intent'])

    # Print the output from dialog, if any. Supports only a single
    # text response.
    if response['output']['generic']:
        if response['output']['generic'][0]['response_type'] == 'text':
            print(response['output']['generic'][0]['text'])

    # Prompt for next round of input.
    user_input = input('>> ')
    message_input = {
        'text': user_input
    }

# We're done, so we delete the session.
service.delete_session(
    assistant_id = assistant_id,
    session_id = session_id
)

{: codeblock } {: python }

/*
 * Example 2: adds user input and detects intents.
 */

import com.ibm.watson.assistant.v2.Assistant;
import com.ibm.watson.assistant.v2.model.CreateSessionOptions;
import com.ibm.watson.assistant.v2.model.DeleteSessionOptions;
import com.ibm.watson.assistant.v2.model.RuntimeResponseGeneric;
import com.ibm.watson.assistant.v2.model.MessageInput;
import com.ibm.watson.assistant.v2.model.MessageOptions;
import com.ibm.watson.assistant.v2.model.MessageResponse;
import com.ibm.watson.assistant.v2.model.RuntimeIntent;
import com.ibm.watson.assistant.v2.model.SessionResponse;
import com.ibm.cloud.sdk.core.security.Authenticator;
import com.ibm.cloud.sdk.core.security.IamAuthenticator;
import java.util.List;
import java.util.logging.LogManager;

public class AssistantSimpleExample {
  public static void main(String[] args) {

    // Suppress log messages in stdout.
    LogManager.getLogManager().reset();

    // Set up Assistant service.
    Authenticator authenticator = new IamAuthenticator("{apikey}"); // replace with API key
    Assistant service = new Assistant("2019-02-28", authenticator);
    String assistantId = "{assistant_id}"; // replace with assistant ID

    // Create session.
    CreateSessionOptions createSessionOptions = new CreateSessionOptions.Builder(assistantId).build();
    SessionResponse session = service.createSession(createSessionOptions).execute().getResult();
    String sessionId = session.getSessionId();

    // Initialize with empty message to start the conversation.
    MessageInput input = new MessageInput.Builder()
      .messageType("text")
      .text("")
      .build();

    // Main input/output loop
    do {
      // Send message to assistant.
      MessageOptions messageOptions = new MessageOptions.Builder(assistantId, sessionId)
        .input(input)
        .build();
      MessageResponse response = service.message(messageOptions).execute().getResult();

      // If an intent was detected, print it to the console.
      List<RuntimeIntent> responseIntents = response.getOutput().getIntents();
      if(responseIntents.size() > 0) {
        System.out.println("Detected intent: #" + responseIntents.get(0).intent());
      }

      // Print the output from dialog, if any. Assumes a single text response.
      List<RuntimeResponseGeneric> responseGeneric = response.getOutput().getGeneric();
      if(responseGeneric.size() > 0) {
        if(responseGeneric.get(0).responseType().equals("text")) {
          System.out.println(responseGeneric.get(0).text());
        }
      }

      // Prompt for next round of input.
      System.out.print(">> ");
      String inputText = System.console().readLine();
      input = new MessageInput.Builder()
        .messageType("text")
        .text(inputText)
        .build();
    } while(!input.text().equals("quit"));

    // We're done, so we delete the session.
    DeleteSessionOptions deleteSessionOptions = new DeleteSessionOptions.Builder(assistantId, sessionId).build();
    service.deleteSession(deleteSessionOptions).execute();
  }
}

{: codeblock } {: java }

This version of the application begins the same way as before: sending an empty message to the assistant to start the conversation.

The processResponse() function now displays any intent detected by the dialog skill, along with the output text. It then prompts for the next round of user input. {: javascript }

It then displays any intent detected by the dialog skill, along with the output text. It then prompts for the next round of user input. {: python }

It then displays any intent detected by the dialog along with the output text, and then it prompts for the next round of user input. {: java}

We haven't yet implemented a natural-language way to end the conversation, so instead we're using the literal command quit to indicate that the program should delete the session and exit.

Welcome to the Watson Assistant example!
>> hello
Detected intent: #hello
Good day to you.
>> what time is it?
Detected intent: #time
>> goodbye
Detected intent: #goodbye
OK! See you later.
>> quit

{: screen}

Now we're making progress! The {{site.data.keyword.conversationshort}} service is correctly recognizing our intents, and the dialog is returning the correct output text (where provided) for each intent.

However, nothing else is happening. When we ask for the time, we get no answer; and when we say goodbye, the conversation does not end. That's because those intents require additional actions to be taken by the app.

Implementing app actions

{: #api-client-implement-actions}

In addition to the output text to be displayed to the user, our {{site.data.keyword.conversationshort}} dialog uses the actions array in the response JSON to signal when the application needs to carry out an action, based on the detected intents. When the dialog determines that the client application needs to do something, it returns an action object with a type of client. The name of the action indicates the specific action, either display_time or end_conversation. (Additional properties of the action can specify parameters, credentials, and other information related to the action, but for our example we don't need anything but the action name.)

We know that our dialog will never request more than one action at a time, so our client only needs to check for the existence of a single client action in the actions array. If it finds one, it can then carry out the specified action. (This version also removes the display of detected intents, now that we're sure those are being correctly identified.)

// Example 3: implements app actions.

const prompt = require('prompt-sync')();
const AssistantV2 = require('ibm-watson/assistant/v2');
const { IamAuthenticator } = require('ibm-watson/auth');

// Set up Assistant service wrapper.
const service = new AssistantV2({
  version: '2019-02-28',
  authenticator: new IamAuthenticator({
    apikey: '{apikey}', // replace with API key
  })
});

const assistantId = '{assistant_id}'; // replace with assistant ID
let sessionId;

// Create session.
service
  .createSession({
    assistantId,
  })
  .then(res => {
    sessionId = res.result.session_id;
    sendMessage({
      messageType: 'text',
      text: ''  // start conversation with empty message
    });
  })
  .catch(err => {
    console.log(err); // something went wrong
  });

// Send message to assistant.
function sendMessage(messageInput) {
  service
    .message({
      assistantId,
      sessionId,
      input: messageInput,
    })
    .then(res => {
      processResponse(res.result);
    })
    .catch(err => {
      console.log(err); // something went wrong
    });
}

// Process the response.
function processResponse(response) {

  let endConversation = false;

  // Check for client actions requested by the assistant.
  if (response.output.actions) {
    if (response.output.actions[0].type === 'client'){
      if (response.output.actions[0].name === 'display_time') {
        // User asked what time it is, so we output the local system time.
        console.log('The current time is ' + new Date().toLocaleTimeString() + '.');
      } else if (response.output.actions[0].name === 'end_conversation') {
        // User said goodbye, so we're done.
        console.log(response.output.generic[0].text);
        endConversation = true;
      }
    }
  } else {
    // Display the output from assistant, if any. Assumes a single text response.
    if (response.output.generic) {
      if (response.output.generic.length > 0) {
        if (response.output.generic[0].response_type === 'text') {
          console.log(response.output.generic[0].text);
        }
      }
    }
  }

  // If we're not done, prompt for the next round of input.
  if (!endConversation) {
    const newMessageFromUser = prompt('>> ');
    newMessageInput = {
      messageType: 'text',
      text: newMessageFromUser,
    }
    sendMessage(newMessageInput);
  } else {
    service
      .deleteSession({
        assistantId,
        sessionId,
      })
      .then(res => {
        return;
      })
      .catch(err => {
        console.log(err); // something went wrong
      });
  }
}

{: codeblock} {: javascript}

# Example 3: Implements app actions.

from ibm_watson import AssistantV2
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
import time

# Set up Assistant service.
authenticator = IAMAuthenticator('{apikey}') # replace with API key
service = AssistantV2(
    version = '2019-02-28',
    authenticator = authenticator
)

assistant_id = '{assistant_id}' # replace with assistant ID

# Create session.
session_id = service.create_session(
    assistant_id = assistant_id
).get_result()['session_id']

# Initialize with empty values to start the conversation.
message_input = {'text': ''}
current_action = ''

# Main input/output loop
while current_action != 'end_conversation':
    # Clear any action flag set by the previous response.
    current_action = ''

    # Send message to assistant.
    response = service.message(
        assistant_id,
        session_id,
        input = message_input
    ).get_result()

    # Print the output from dialog, if any. Supports only a single
    # text response.
    if response['output']['generic']:
        if response['output']['generic'][0]['response_type'] == 'text':
            print(response['output']['generic'][0]['text'])

    # Check for client actions requested by the assistant.
    if 'actions' in response['output']:
        if response['output']['actions'][0]['type'] == 'client':
            current_action = response['output']['actions'][0]['name']

    # User asked what time it is, so we output the local system time.
    if current_action == 'display_time':
        print('The current time is ' + time.strftime('%I:%M:%S %p') + '.')
    # If we're not done, prompt for next round of input.
    if current_action != 'end_conversation':
        user_input = input('>> ')
        message_input = {
            'text': user_input
        }

# We're done, so we delete the session.
service.delete_session(
    assistant_id = assistant_id,
    session_id = session_id
)

{: codeblock} {: python}

/*
 * Example 3: implements app actions.
 */

import com.ibm.watson.assistant.v2.Assistant;
import com.ibm.watson.assistant.v2.model.SessionResponse;
import com.ibm.watson.assistant.v2.model.CreateSessionOptions;
import com.ibm.watson.assistant.v2.model.DeleteSessionOptions;
import com.ibm.watson.assistant.v2.model.MessageInput;
import com.ibm.watson.assistant.v2.model.MessageOptions;
import com.ibm.watson.assistant.v2.model.RuntimeResponseGeneric;
import com.ibm.watson.assistant.v2.model.DialogNodeAction;
import com.ibm.watson.assistant.v2.model.MessageResponse;
import com.ibm.cloud.sdk.core.security.Authenticator;
import com.ibm.cloud.sdk.core.security.IamAuthenticator;
import java.time.LocalTime;
import java.time.format.DateTimeFormatter;
import java.util.List;
import java.util.logging.LogManager;

public class AssistantSimpleExample {
  public static void main(String[] args) {

    // Suppress log messages in stdout.
    LogManager.getLogManager().reset();

    // Set up Assistant service.
    Authenticator authenticator = new IamAuthenticator("{apikey}"); // replace with API key
    Assistant service = new Assistant("2019-02-28", authenticator);
    String assistantId = "{assistant_id}"; // replace with assistant ID

    // Create session.
    CreateSessionOptions createSessionOptions = new CreateSessionOptions.Builder(assistantId).build();
    SessionResponse session = service.createSession(createSessionOptions).execute().getResult();
    String sessionId = session.getSessionId();

    // Initialize with empty values to start the conversation.
    MessageInput input = new MessageInput.Builder()
      .messageType("text")
      .text("")
      .build();
    String currentAction;

    // Main input/output loop
    do {
      // Clear any action flag set by the previous response.
      currentAction = "";

      // Send message to assistant.
      MessageOptions messageOptions = new MessageOptions.Builder(assistantId, sessionId)
        .input(input)
        .build();
      MessageResponse response = service.message(messageOptions).execute().getResult();

      // Print the output from dialog, if any. Assumes a single text response.
      List<RuntimeResponseGeneric> responseGeneric = response.getOutput().getGeneric();
      if(responseGeneric.size() > 0) {
        if(responseGeneric.get(0).responseType().equals("text")) {
          System.out.println(responseGeneric.get(0).text());
        }
      }

      // Check for any actions requested by the assistant.
      List<DialogNodeAction> responseActions = response.getOutput().getActions();
      if(responseActions != null) {
        if(responseActions.get(0).getType().equals("client")) {
          currentAction = responseActions.get(0).getName();
        }
      }

      // User asked what time it is, so we output the local system time.
      if(currentAction.equals("display_time")) {
        DateTimeFormatter fmt = DateTimeFormatter.ofPattern("h:mm:ss a");
        LocalTime time = LocalTime.now();
        System.out.println("The current time is " + time.format(fmt) + ".");
      }

      // If we're not done, prompt for next round of input.
      if(!currentAction.equals("end_conversation")) {
        System.out.print(">> ");
        String inputText = System.console().readLine();
        input = new MessageInput.Builder()
          .messageType("text")
          .text(inputText)
          .build();
      }

    } while(!currentAction.equals("end_conversation"));

    // We're done, so we delete the session.
    DeleteSessionOptions deleteSessionOptions = new DeleteSessionOptions.Builder(assistantId, sessionId).build();
    service.deleteSession(deleteSessionOptions).execute();
  }
}

{: codeblock} {: java}

The app now checks the actions array in the response to see if an action with type=client is present. If so, it checks the name value of the action and carries out the appropriate action (either displaying the local system time, or setting an internal flag that indicates that the conversation is over).

Welcome to the {{site.data.keyword.conversationshort}} example!
>> hello
Good day to you.
>> what time is it?
The current time is 12:40:42 PM.
>> goodbye
OK! See you later.

{: screen}

Success! The application now uses the {{site.data.keyword.conversationshort}} service to identify the intents in natural-language input, displays the appropriate responses, and implements the requested client actions.

Of course, a real-world application would use a more sophisticated user interface, such as a web chat window. And it would implement more complex actions, possibly integrating with a customer database or other business systems. It would also need to send additional data to the assistant, such as a user ID to identify each unique user. But the basic principles of how the application interacts with the {{site.data.keyword.conversationshort}} service would remain the same.

For some more complex examples, see Sample apps.

Using the v1 API

{: #api-client-v1-api}

Using the v2 API is the recommended way to build a runtime client application that communicates with the {{site.data.keyword.conversationshort}} service. However, some older applications might still be using the v1 API, which includes a similar runtime method for sending messages to the workspace within a dialog skill.

Note that if your app uses the v1 API, it communicates directly with the workspace, bypassing the orchestration and state-management capabilities of the assistant. This means that your application is responsible for managing state information using the context. Your application must maintain the context by saving the context received with each response and sending it back to the service with each new message request. (The v1 /message method always returns the context with each response.)

For more information about the v1 /message method and context, see the v1 API Reference{: external}.