Skip to content

Official source codes for implementing "Early screening of potential breakthrough technologies with enhanced interpretability: A patent-specific hierarchical attention network model"

Notifications You must be signed in to change notification settings

jwchoi95/PatentHAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PatentHAN

Implementation of "Early screening of potential breakthrough technologies with enhanced interpretability: A patent-specific hierarchical attention network model"

Dataset

Requirements

Our experiment setting is as follows:

Install

pip install -r requirements.txt

PLM configuration

from transformers import *

#PatentBERT
tokenizer = AutoTokenizer.from_pretrained("dheerajpai/patentbert")
model = AutoModelForMaskedLM.from_pretrained("dheerajpai/patentbert")

#BERT from arXiv preprint arXiv:1810.04805.
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-uncased")

#SciBERT from arXiv preprint arXiv:1903.10676.
tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
model = AutoModel.from_pretrained("allenai/scibert_scivocab_uncased")

#BioBERT
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-base-cased-v1.2")
model = AutoModelForMaskedLM.from_pretrained("dmis-lab/biobert-base-cased-v1.2")

#PubMedBERT
tokenizer = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
model = AutoModel.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")

About

Official source codes for implementing "Early screening of potential breakthrough technologies with enhanced interpretability: A patent-specific hierarchical attention network model"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages