Skip to content

Commit

Permalink
added variables to obj function, improved tests
Browse files Browse the repository at this point in the history
  • Loading branch information
ddceruti committed Oct 29, 2024
1 parent ad67279 commit 29e953d
Show file tree
Hide file tree
Showing 8 changed files with 81 additions and 58 deletions.
9 changes: 6 additions & 3 deletions examples/one-producer/run_mts.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
DATAPATH = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'data_mts')
OUTPUTPATH = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'results/mts_eco_easy/')
'results/mts_eco/')
REGRESSION = 'regression.csv' # regression coefficients for thermal capacity and heat losses
TIMESERIES = 'timeseries.csv' # timeseries for heat scaling
PLOTS = True # save plots of the district
Expand Down Expand Up @@ -110,6 +110,9 @@ def main(filepath, outputpath, plots=True, solver='gurobi', mode='forced'):


if __name__ == '__main__':
main(filepath=os.path.join(DATAPATH), outputpath=os.path.join(OUTPUTPATH),
plots=PLOTS, solver=SOLVER, mode='economic')
main(filepath=os.path.join(DATAPATH),
outputpath=os.path.join(OUTPUTPATH),
plots=PLOTS,
solver=SOLVER,
mode='forced')
print(f'Finished {OUTPUTPATH}')
10 changes: 8 additions & 2 deletions tests/conftest.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
"""Pytest configuration file."""


def pytest_addoption(parser):
parser.addoption("--solver", action="store", default="scip",
help="Define the solver to use for the optimization. Default is cbc.")
parser.addoption(
"--solver",
action="store",
default="scip",
help="Define the solver to use for the optimization. Default is cbc.")
1 change: 1 addition & 0 deletions tests/hydraulics.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ def test_regression():
# heat loss regression
r_heat_loss = precalc.regression_heat_losses(
settings, thermal_capacity=r_thermal_cap)

# assert that each params item is within 1% of the expected value
assert r_heat_loss['a'] == approx(4.348000e-07, rel=0.01)
assert r_heat_loss['b'] == approx(0.02189, rel=0.01)
Expand Down
13 changes: 9 additions & 4 deletions tests/mts_easy.py → tests/mts.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,14 @@
"""Test the multiple timestep optimization model."""

import os

import pyomo.environ as pyo
import pandas as pd
from pytest import approx

import topotherm as tt


def read_regression(path, i):
"""Read the regression coefficients for the thermal capacity and heat
losses from csv file.
Expand All @@ -24,7 +28,7 @@ def read_regression(path, i):
return r_thermal_cap, r_heat_loss


def test_mtseasy_forced(request):
def test_mts_forced(request):
"""Main function to run the optimization"""
solver_name = request.config.getoption("--solver")
assert solver_name in ["scip", "gurobi", "cbc"], f"Unsupported solver: {solver_name}"
Expand Down Expand Up @@ -62,10 +66,10 @@ def test_mtseasy_forced(request):
assert result.solver.status == pyo.SolverStatus.ok
# assert that the objective value is less than 2% away from the expected
# value
assert (abs(pyo.value(model.obj)) - 4.6259e+06) < 0.02 * 4.6259e+06
assert abs(pyo.value(model.obj)) == approx(519676.4358105995, rel=0.02)


def test_mtseasy_eco(request):
def test_mts_eco(request):
"""Main function to run the optimization"""
solver_name = request.config.getoption("--solver")
assert solver_name in ["scip", "gurobi", "cbc"], f"Unsupported solver: {solver_name}"
Expand Down Expand Up @@ -100,4 +104,5 @@ def test_mtseasy_eco(request):

result = opt.solve(model, tee=True)
assert result.solver.status == pyo.SolverStatus.ok
assert (abs(pyo.value(model.obj)) - 4.01854e+04) < 0.02 * 4.01854e+04
assert pyo.value(model.obj) == approx(-39212.8646266408, rel=0.02)
# assert (abs(pyo.value(model.obj)) - 4.01854e+04) < 0.02 * 4.01854e+04
4 changes: 2 additions & 2 deletions tests/sts.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def test_sts_forced(request):
assert result.solver.status == pyo.SolverStatus.ok
# assert that the objective value is less than 2% away from the expected
# value
assert abs(pyo.value(model.obj)) == approx(519676.4358105995, rel=0.02)
assert pyo.value(model.obj) == approx(519676.4358105995, rel=0.02)


def test_sts_eco(request):
Expand Down Expand Up @@ -101,5 +101,5 @@ def test_sts_eco(request):

result = opt.solve(model, tee=True)
assert result.solver.status == pyo.SolverStatus.ok
assert abs(pyo.value(model.obj)) == approx(4.01854e+04, rel=0.02)
assert pyo.value(model.obj) == approx(-4.01854e+04, rel=0.02)
# assert (abs(pyo.value(model.obj)) - 4.01854e+04) < 0.02 * 4.01854e+04
1 change: 1 addition & 0 deletions tests/test_setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

from pytest import approx


def test_import():
import topotherm

Expand Down
80 changes: 44 additions & 36 deletions topotherm/multiple_timestep.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@
The module contains the following functions:
* annuity: Calculate the annuity factor
* model: Create the optimization model for the multiple time steps operation
* model: Create the optimization model for the multiple time steps
operation
"""
import numpy as np
import pyomo.environ as pyo
Expand Down Expand Up @@ -260,56 +261,63 @@ def connection_to_consumer_fcd(m, d, j, t):
rule=connection_to_consumer_fcd,
doc=msg_)

if optimization_mode == "forced":
def connection_to_consumer_built_fcd(m, j):
return m.lambda_b[j] >= 1
mdl.cons_connection_forced = pyo.Constraint(
mdl.forced_edges, rule=connection_to_consumer_built_fcd,
mdl.forced_edges,
rule=connection_to_consumer_built_fcd,
doc='The house connection has to be built to satisfy the demand')

if optimization_mode == "forced":
def total_energy_conservation(m, t):
return sum(m.P_source[k, t] for k in m.set_n_p) \
- sum(m.P['ij', 'in', k, t] - m.P['ij', 'out', k, t] for k in m.set_n_i) \
- sum(m.P['ji', 'in', k, t] - m.P['ji', 'out', k, t] for k in m.set_n_i) \
- sum(matrices['q_c'][k, t] for k in m.set_n_c) == 0
mdl.cons_total_energy_cons = pyo.Constraint(mdl.set_t, rule=total_energy_conservation,
doc='Total energy conservation')

def objective_function(m):
fuel = sum(
sum(m.P_source[k, t]
mdl.cons_total_energy_cons = pyo.Constraint(
mdl.set_t,
rule=total_energy_conservation,
doc='Total energy conservation')

mdl.revenue = pyo.Var(doc='Revenue', domain=pyo.NegativeReals)
mdl.revenue_constr = pyo.Constraint(
expr=mdl.revenue == sum(
sum(mdl.lambda_b[j] * matrices['flh_consumer'][k, t]
* matrices['q_c'][k, t] for k, j in mdl.consumer_edges)
for t in mdl.set_t) * economics.heat_price * (-1),
doc='Revenue constraint')

mdl.opex_source = pyo.Var(doc='OPEX Source', domain=pyo.PositiveReals)
mdl.opex_source_constr = pyo.Constraint(
expr=mdl.opex_source == sum(
sum(mdl.P_source[k, t]
* economics.source_price[k]
* matrices['flh_source'][k, t]
for k in m.set_n_p)
for t in mdl.set_t)

pipes = sum(
(
(m.P_cap[k] * regression_inst['a']
+ regression_inst['b'] * m.lambda_b[k]
) * annuity(economics.pipes_c_irr, economics.pipes_lifetime) * matrices['l_i'][k]
) for k in m.set_n_i
)

source = sum(m.P_source_inst[k]
for k in mdl.set_n_p)
for t in mdl.set_t),
doc='OPEX Source constraint')

mdl.capex_pipes = pyo.Var(doc='CAPEX Pipe', domain=pyo.PositiveReals)
pipes = sum(
((mdl.P_cap[k] * regression_inst['a']
+ regression_inst['b'] * mdl.lambda_b[k])
* annuity(economics.pipes_c_irr, economics.pipes_lifetime)
* matrices['l_i'][k]) for k in mdl.set_n_i)

mdl.capex_pipe_constr = pyo.Constraint(
expr=mdl.capex_pipes == pipes,
doc='CAPEX Pipe constraint')

mdl.capex_source = pyo.Var(doc='CAPEX Source', domain=pyo.PositiveReals)
mdl.capex_source_constr = pyo.Constraint(
expr=mdl.capex_source == sum(mdl.P_source_inst[k]
* economics.source_c_inv[k]
* annuity(economics.source_c_irr[k],
economics.source_lifetime[k])
for k in m.set_n_p)

if optimization_mode == "economic":
revenue = sum(
sum(m.lambda_b[j]
* matrices['flh_consumer'][k, t]
* matrices['q_c'][k, t]
for k, j in mdl.consumer_edges)
for t in mdl.set_t) * economics.heat_price * (-1)
else:
revenue = 0

return fuel + pipes + source + revenue
for k in mdl.set_n_p),
doc='CAPEX Source constraint')

mdl.obj = pyo.Objective(rule=objective_function, doc='Objective function')
mdl.obj = pyo.Objective(
expr=mdl.capex_source + mdl.capex_pipes + mdl.opex_source + mdl.revenue,
doc='Objective function')

return mdl
21 changes: 10 additions & 11 deletions topotherm/single_timestep.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ def total_energy_cons(m, t):
mdl.set_t, rule=total_energy_cons,
doc='Total energy conservation')

mdl.revenue = pyo.Var(doc='Revenue')
mdl.revenue = pyo.Var(doc='Revenue', domain=pyo.NegativeReals)
mdl.revenue_constr = pyo.Constraint(
expr=mdl.revenue == (
sum(
Expand All @@ -267,7 +267,7 @@ def total_energy_cons(m, t):
for t in mdl.set_t) * economics.heat_price * (-1)),
doc='Revenue constraint')

mdl.opex_source = pyo.Var(doc='OPEX Source')
mdl.opex_source = pyo.Var(doc='OPEX Source', domain=pyo.PositiveReals)
mdl.opex_source_constr = pyo.Constraint(
expr=mdl.opex_source == sum(
sum(mdl.P_source[k, t]
Expand All @@ -277,7 +277,7 @@ def total_energy_cons(m, t):
for t in mdl.set_t),
doc='OPEX Source constraint')

mdl.capex_pipes = pyo.Var(doc='CAPEX Pipe')
mdl.capex_pipes = pyo.Var(doc='CAPEX Pipe', domain=pyo.PositiveReals)

# CAREFUL HARDCODED FOR 0 TIME STEPS
def pipes_fix(k):
Expand All @@ -289,19 +289,18 @@ def pipes_var(k):
* (mdl.lambda_['ij', k] + mdl.lambda_['ji', k]))

mdl.capex_pipe_constr = pyo.Constraint(
expr=mdl.capex_pipes == (sum(
expr=mdl.capex_pipes == sum(
(pipes_fix(k) + pipes_var(k)) * matrices['l_i'][k]
for k in mdl.set_n_i)
* annuity(economics.pipes_c_irr, economics.pipes_lifetime)),
* annuity(economics.pipes_c_irr, economics.pipes_lifetime),
doc='CAPEX Pipe constraint')

mdl.capex_source = pyo.Var(doc='CAPEX Source')
mdl.capex_source = pyo.Var(doc='CAPEX Source', domain=pyo.PositiveReals)
mdl.capex_source_constr = pyo.Constraint(
expr=mdl.capex_source == sum(mdl.P_source_inst[k]
* economics.source_c_inv[k]
* annuity(economics.source_c_irr[k],
economics.source_lifetime[k])
for k in mdl.set_n_p),
expr=mdl.capex_source == sum(
mdl.P_source_inst[k] * economics.source_c_inv[k]
* annuity(economics.source_c_irr[k], economics.source_lifetime[k])
for k in mdl.set_n_p),
doc='CAPEX Source constraint')

mdl.obj = pyo.Objective(
Expand Down

0 comments on commit 29e953d

Please sign in to comment.