Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve perf by using less heap allocs #37

Merged
merged 3 commits into from
Jul 7, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 28 additions & 78 deletions src/main.c
Original file line number Diff line number Diff line change
Expand Up @@ -25,101 +25,51 @@ char letters[52] = {'A', 'a', 'B', 'b', 'C', 'c', 'D', 'd', 'E', 'e', 'F', 'f',
'J', 'j', 'K', 'k', 'L', 'l', 'M', 'm', 'N', 'n', 'O', 'o', 'P', 'p', 'Q', 'q', 'R', 'r',
'S', 's', 'T', 't', 'U', 'u', 'V', 'v', 'W', 'w', 'X', 'x', 'Y', 'y', 'Z', 'z'};

void propagate_fwd(const matrix* weights, const vector* inputs, vector* results, const vector* biases) {
sgemv_t_tuned(weights->data, inputs->data, results->data, weights->cols, weights->rows);
void propagate_fwd(const matrix* weights, const float* inputs, float* results, const vector* biases) {
sgemv_t_tuned(weights->data, inputs, results, weights->cols, weights->rows);
// Add biases onto results
vector_add_inplace(biases->len, biases->data, results->data);
vector_add_inplace(biases->len, biases->data, results);
}

// Basic version, too many aligned_alloc
u8 infer(vector* input) {
vector* outputs[NUM_LAYERS];
outputs[0] = new_vec_aligned(98);
outputs[1] = new_vec_aligned(65);
outputs[2] = new_vec_aligned(50);
outputs[3] = new_vec_aligned(30);
outputs[4] = new_vec_aligned(25);
outputs[5] = new_vec_aligned(40);
outputs[6] = new_vec_aligned(52);

propagate_fwd(weights[0], input, outputs[0], biases[0]);
relu_inplace(outputs[0]->data, 98);
propagate_fwd(weights[1], outputs[0], outputs[1], biases[1]);
relu_inplace(outputs[1]->data, 65);
propagate_fwd(weights[2], outputs[1], outputs[2], biases[2]);
relu_inplace(outputs[2]->data, 50);
propagate_fwd(weights[3], outputs[2], outputs[3], biases[3]);
relu_inplace(outputs[3]->data, 30);
propagate_fwd(weights[4], outputs[3], outputs[4], biases[4]);
relu_inplace(outputs[4]->data, 25);
propagate_fwd(weights[5], outputs[4], outputs[5], biases[5]);
relu_inplace(outputs[5]->data, 40);
propagate_fwd(weights[6], outputs[5], outputs[6], biases[6]);
softmax_inplace(outputs[6]->data, 52);

u8 pred = argmax(outputs[6]->data, 52);

free(outputs[0]->data);
free(outputs[0]);
free(outputs[1]->data);
free(outputs[1]);
free(outputs[2]->data);
free(outputs[2]);
free(outputs[3]->data);
free(outputs[3]);
free(outputs[4]->data);
free(outputs[4]);
free(outputs[5]->data);
free(outputs[5]);
free(outputs[6]->data);
free(outputs[6]);

return pred;
}

// Somewhat experimental, minumum number of alligned_alloc without breaking things.
// This code fucking sucks but its fast so uhhhh
// Minumum number of alligned_alloc without breaking things.
// This code f***ing sucks but its fast so uhhhh
u8 infer_reuse_layers_thread(vector* input, matrix** weights, vector** biases) {
vector* outputs[2];
outputs[0] = new_vec_aligned(98);
outputs[1] = new_vec_aligned(65);
// Slightly larger than required for padding
float out0[104] __attribute__((aligned(SIMD_ALIGN))) = {0};
float out1[72] __attribute__((aligned(SIMD_ALIGN))) = {0};

propagate_fwd(weights[0], input, outputs[0], biases[0]);
relu_inplace(outputs[0]->data, 98);
propagate_fwd(weights[1], outputs[0], outputs[1], biases[1]);
relu_inplace(outputs[1]->data, 65);
propagate_fwd(weights[0], input->data, out0, biases[0]);
relu_inplace(out0, 98);

memset(outputs[0]->data, 0, 50 * sizeof(f32));
propagate_fwd(weights[1], out0, out1, biases[1]);
relu_inplace(out1, 65);

propagate_fwd(weights[2], outputs[1], outputs[0], biases[2]);
relu_inplace(outputs[0]->data, 50);
memset(out0, 0, 50 * sizeof(f32));

memset(outputs[1]->data, 0, 30 * sizeof(f32));
propagate_fwd(weights[2], out1, out0, biases[2]);
relu_inplace(out0, 50);

propagate_fwd(weights[3], outputs[0], outputs[1], biases[3]);
relu_inplace(outputs[1]->data, 30);
memset(out1, 0, 30 * sizeof(f32));

memset(outputs[0]->data, 0, 25 * sizeof(f32));
propagate_fwd(weights[3], out0, out1, biases[3]);
relu_inplace(out1, 30);

propagate_fwd(weights[4], outputs[1], outputs[0], biases[4]);
relu_inplace(outputs[0]->data, 25);
memset(out0, 0, 25 * sizeof(f32));

memset(outputs[1]->data, 0, 40 * sizeof(f32));
propagate_fwd(weights[4], out1, out0, biases[4]);
relu_inplace(out0, 25);

propagate_fwd(weights[5], outputs[0], outputs[1], biases[5]);
relu_inplace(outputs[1]->data, 40);
memset(out1, 0, 40 * sizeof(f32));

memset(outputs[0]->data, 0, 52 * sizeof(f32));
propagate_fwd(weights[5], out0, out1, biases[5]);
relu_inplace(out1, 40);

propagate_fwd(weights[6], outputs[1], outputs[0], biases[6]);
softmax_inplace(outputs[0]->data, 52);
memset(out0, 0, 52 * sizeof(f32));

u8 prediction = argmax(outputs[0]->data, 52);
propagate_fwd(weights[6], out1, out0, biases[6]);
softmax_inplace(out0, 52);

free(outputs[0]->data);
free(outputs[0]);
free(outputs[1]->data);
free(outputs[1]);
u8 prediction = argmax(out0, 52);

return prediction;
}
Expand Down