Skip to content

Commit

Permalink
Christmas special
Browse files Browse the repository at this point in the history
  • Loading branch information
kaseris committed Dec 24, 2023
1 parent 2c98825 commit d67fc58
Showing 1 changed file with 395 additions and 0 deletions.
395 changes: 395 additions & 0 deletions src/skelcast/models/rnn/hpgan.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,395 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytest


class HPGANAttention(nn.Module):
def __init__(self, hidden_dim, attention_len=None) -> None:
super().__init__()
if attention_len is None:
attention_len = hidden_dim

self.linear_v = nn.Linear(hidden_dim, attention_len, bias=True)
self.linear_u = nn.Linear(attention_len, 1, bias=False)

def forward(self, inputs, activation=None):
v = self.linear_v(inputs)
if activation is not None:
v = activation(v)

vu = self.linear_u(v).squeeze(-1)
alpha = F.softmax(vu, dim=-1)

return torch.sum(inputs * alpha.unsqueeze(-1), dim=1)


def generate_skeletons_with_prob(g, d_real_prob, d_fake_prob, data_preprocessing, d_inputs, g_inputs, g_z):
'''
Generate multiple future skeleton poses for each `z` in `g_z` using PyTorch models.
'''
def generate(input_data, input_past_data, z_data_p, batch_index=0):
skeleton_data = []
d_is_sequence_probs = []

# Move input data to the same device as the model
input_data_tensor = torch.tensor(input_data).to(d_real_prob.device)
input_past_data_tensor = torch.tensor(input_past_data).to(g.device)

# Get real data probability
with torch.no_grad():
prob = d_real_prob(input_data_tensor).squeeze().cpu().numpy()

skeleton_data.append(data_preprocessing.unnormalize(input_data[batch_index, :, :, :]))
d_is_sequence_probs.append(prob[batch_index])

for z_value_p in z_data_p:
z_tensor = torch.tensor(z_value_p).to(g.device)

with torch.no_grad():
# Generate prediction and fake data probability
pred = g(input_past_data_tensor, z_tensor)
inout_pred = torch.cat((input_past_data_tensor, pred), dim=1)
fake_prob = d_fake_prob(inout_pred).squeeze().cpu().numpy()

skeleton_data.append(data_preprocessing.unnormalize(inout_pred[batch_index, :, :, :].numpy()))
d_is_sequence_probs.append(fake_prob[batch_index])

return skeleton_data, d_is_sequence_probs

return generate


class RNNDiscriminator(nn.Module):
def __init__(self, inputs_depth, sequence_length, use_attention=False, use_residual=False,
cell_type='gru', output_category_dims=None):
super(RNNDiscriminator, self).__init__()
self.use_attention = use_attention
self.use_residual = use_residual
self.num_neurons = 1024
self.num_layers = 2
self.sequence_length = sequence_length
self.output_dims = 1
self.output_category_dims = output_category_dims

# Define the RNN layer
if cell_type == 'gru':
self.rnn = nn.GRU(input_size=inputs_depth, hidden_size=self.num_neurons,
num_layers=self.num_layers, batch_first=True)
elif cell_type == 'lstm':
self.rnn = nn.LSTM(input_size=inputs_depth, hidden_size=self.num_neurons,
num_layers=self.num_layers, batch_first=True)
else:
raise ValueError("Unsupported cell type")

# Attention layer
if self.use_attention:
self.attention = HPGANAttention(self.num_neurons)

# Fully connected layers
self.fc1 = nn.Linear(self.num_neurons, self.num_neurons)
self.output_layer = nn.Linear(self.num_neurons, self.output_dims)
if self.output_category_dims is not None:
self.output_category_layer = nn.Linear(self.num_neurons, self.output_category_dims)

def forward(self, inputs):
# RNN forward pass
outputs, _ = self.rnn(inputs)

if self.use_attention:
last = self.attention(outputs)
else:
last = outputs[:, -1, :]

base = F.relu(self.fc1(last))

output = self.output_layer(base)
prob = torch.sigmoid(output)

if self.output_category_dims is not None:
output_category = self.output_category_layer(base)
return output, output_category, prob
else:
return output, prob


class ResidualBlock(nn.Module):
def __init__(self, num_neurons, activation_fn):
super(ResidualBlock, self).__init__()
self.fc1 = nn.Linear(num_neurons, num_neurons)
self.fc2 = nn.Linear(num_neurons, num_neurons)
self.activation_fn = activation_fn

def forward(self, x):
residual = x
out = self.activation_fn(self.fc1(x))
out = self.fc2(out)
out += residual
return self.activation_fn(out)


class NNDiscriminator(nn.Module):
def __init__(self, inputs_depth, num_layers=3):
super(NNDiscriminator, self).__init__()
self.num_neurons = 512
self.num_layers = num_layers
self.output_dims = 1
self.stddev = 0.001

# Create a sequential model for the fully connected layers
fc_layers = []
for _ in range(num_layers):
fc_layers.append(nn.Linear(inputs_depth, self.num_neurons))
fc_layers.append(nn.ReLU())
inputs_depth = self.num_neurons # Set input depth for next layer

self.fc_layers = nn.Sequential(*fc_layers)
self.output_layer = nn.Linear(self.num_neurons, self.output_dims)

def forward(self, inputs):
# Reshape and flatten inputs if necessary
inputs = inputs.view(inputs.size(0), -1)

net = self.fc_layers(inputs)
output = self.output_layer(net)
prob = torch.sigmoid(output)

return output, prob


class NNResidualDiscriminator(nn.Module):
def __init__(self, inputs_depth, num_residual_blocks=3, activation_fn=F.relu):
super(NNResidualDiscriminator, self).__init__()
self.num_neurons = 512
self.num_residual_blocks = num_residual_blocks
self.activation_fn = activation_fn

# Initial fully connected layer
self.fc1 = nn.Linear(inputs_depth, self.num_neurons)

# Residual blocks
self.residual_blocks = nn.Sequential(
*[ResidualBlock(self.num_neurons, self.activation_fn) for _ in range(num_residual_blocks)]
)

# Output layer
self.fc2 = nn.Linear(self.num_neurons, 1)

def forward(self, inputs):
# Reshape and flatten inputs if necessary
inputs = inputs.view(inputs.size(0), -1)

net = self.activation_fn(self.fc1(inputs))

# Pass through residual blocks
net = self.residual_blocks(net)

# Final output layer
output = self.fc2(net)
prob = torch.sigmoid(output)

return output, prob


class RNNGenerator(nn.Module):
def __init__(self, inputs_depth, batch_size):
super(RNNGenerator, self).__init__()
self.batch_size = batch_size
self.inputs_depth = inputs_depth
self.num_neurons = 256
self.num_layers = 2
self.stddev = 0.001

# LSTM layer
self.rnn = nn.LSTM(input_size=inputs_depth, hidden_size=self.num_neurons,
num_layers=self.num_layers, batch_first=True)

# Output layer
self.output_layer = nn.Linear(self.num_neurons, inputs_depth)

def forward(self, inputs):
# Reshape and flatten inputs if necessary
inputs = inputs.view(inputs.size(0), -1, self.inputs_depth)

# LSTM forward pass
outputs, _ = self.rnn(inputs)

# Getting the last output
last_output = outputs[:, -1, :]

# Passing through the output layer
output = self.output_layer(last_output)

# Reshaping to match the desired output shape
output = output.view(self.batch_size, 1, -1)

return torch.tanh(output)


class NNGenerator(nn.Module):
def __init__(self, inputs_depth, batch_size):
super(NNGenerator, self).__init__()
self.batch_size = batch_size
self.inputs_depth = inputs_depth
self.num_neurons = 1024
self.num_layers = 3
self.stddev = 0.001

# Sequential model for the fully connected layers
self.fc_layers = nn.Sequential()
for _ in range(self.num_layers):
self.fc_layers.append(nn.Linear(inputs_depth, self.num_neurons))
self.fc_layers.append(nn.ReLU())
self.fc_layers.append(nn.Dropout(p=0.5))
inputs_depth = self.num_neurons # Set input depth for next layer

# Output layer
self.output_layer = nn.Linear(self.num_neurons, inputs_depth)

def forward(self, inputs):
# Reshape and flatten inputs if necessary
inputs = inputs.view(inputs.size(0), -1)

net = self.fc_layers(inputs)
output = self.output_layer(net)

# Reshaping to match the desired output shape
output = output.view(self.batch_size, 1, -1)

return torch.tanh(output)


class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, cell_type='gru', use_residual=False):
super(EncoderRNN, self).__init__()
self.cell_type = cell_type
self.use_residual = use_residual

if cell_type == 'gru':
self.rnn = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
elif cell_type == 'lstm':
self.rnn = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
else:
raise ValueError("Unsupported cell type")

def forward(self, inputs):
outputs, hidden = self.rnn(inputs)
return outputs, hidden


class DecoderRNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers, cell_type='gru'):
super(DecoderRNN, self).__init__()
self.cell_type = cell_type

if cell_type == 'gru':
self.rnn = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
elif cell_type == 'lstm':
self.rnn = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
else:
raise ValueError("Unsupported cell type")

self.out = nn.Linear(hidden_size, output_size)

def forward(self, inputs, hidden):
outputs, hidden = self.rnn(inputs, hidden)
outputs = self.out(outputs)
return outputs, hidden


class SequenceToSequenceGenerator(nn.Module):
def __init__(self, input_size, hidden_size, output_size, input_sequence_length, output_sequence_length, num_layers=2, cell_type='gru'):
super(SequenceToSequenceGenerator, self).__init__()
self.encoder = EncoderRNN(input_size, hidden_size, num_layers, cell_type)
self.decoder = DecoderRNN(hidden_size, hidden_size, output_size, num_layers, cell_type)
self.input_sequence_length = input_sequence_length
self.output_sequence_length = output_sequence_length

def forward(self, inputs, z=None):
encoder_outputs, encoder_hidden = self.encoder(inputs)

# Prepare initial input for decoder
decoder_input = torch.zeros(inputs.shape[0], 1, inputs.shape[2], device=inputs.device)
decoder_hidden = encoder_hidden
outputs = []

for _ in range(self.output_sequence_length):
decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden)
outputs.append(decoder_output)
decoder_input = decoder_output

outputs = torch.cat(outputs, dim=1)
return outputs

@pytest.fixture
def setup_discriminator():
# Example setup parameters
inputs_depth = 128
sequence_length = 10
batch_size = 5
use_attention = True
output_category_dims = 3

# Create an instance of the RNNDiscriminator class
discriminator = RNNDiscriminator(inputs_depth, sequence_length, use_attention,
output_category_dims=output_category_dims)

# Create dummy input data
dummy_inputs = torch.randn(batch_size, sequence_length, inputs_depth)

return discriminator, dummy_inputs


def test_rnndiscriminator_output_shape(setup_discriminator):
discriminator, dummy_inputs = setup_discriminator

# Forward pass
outputs = discriminator(dummy_inputs)

# Check output shapes
assert len(outputs) == 3, "Expected 3 outputs (output, output_category, prob)"
assert outputs[0].shape == (dummy_inputs.shape[0], discriminator.output_dims), \
f"Output shape is incorrect: {outputs[0].shape}"
assert outputs[1].shape == (dummy_inputs.shape[0], discriminator.output_category_dims), \
f"Output category shape is incorrect: {outputs[1].shape}"
assert outputs[2].shape == (dummy_inputs.shape[0],), \
f"Probability output shape is incorrect: {outputs[2].shape}"


def test_rnndiscriminator_output_type(setup_discriminator):
discriminator, dummy_inputs = setup_discriminator

# Forward pass
outputs = discriminator(dummy_inputs)

# Check output types
assert isinstance(outputs[0], torch.Tensor), "Output is not a torch.Tensor"
assert isinstance(outputs[1], torch.Tensor), "Output category is not a torch.Tensor"
assert isinstance(outputs[2], torch.Tensor), "Probability output is not a torch.Tensor"


def test_attention():
# TODO: To be included in tests
batch_size = 10
seq_length = 20
num_neurons = 30
attention_len = 15

# Create an instance of the Attention class
attention_layer = HPGANAttention(num_neurons, attention_len)

# Create dummy input data
dummy_inputs = torch.randn(batch_size, seq_length, num_neurons)

# Get the output from the attention layer
output = attention_layer(dummy_inputs)

# Assert the output shape
assert output.shape == (batch_size, num_neurons), f"Output shape is incorrect: {output.shape}"

# Assert the output type
assert isinstance(output, torch.Tensor), "Output is not a torch.Tensor"


if __name__ == '__main__':
test_attention()

0 comments on commit d67fc58

Please sign in to comment.