Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the option to visualize the trajectory of the predictions of the … #62

Merged
merged 1 commit into from
Jan 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 20 additions & 1 deletion src/skelcast/primitives/visualize.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import time

from enum import Enum
from typing import Union
from typing import Union, Optional

import numpy as np
import torch
Expand All @@ -26,6 +26,7 @@ class Colors(Enum):


def visualize_skeleton(skeleton: Union[np.ndarray, torch.Tensor],
trajectory: Optional[Union[np.ndarray, torch.Tensor]] = None,
framerate: int = 30,
skeleton_type: str = 'kinect'):
assert isinstance(skeleton, (np.ndarray, torch.Tensor)), f'Expected a numpy array or a PyTorch tensor, got {type(skeleton)} instead.'
Expand All @@ -48,6 +49,21 @@ def visualize_skeleton(skeleton: Union[np.ndarray, torch.Tensor],
vis = o3d.visualization.Visualizer()
vis.create_window()

if trajectory is not None:
trajectory_line_set = o3d.geometry.LineSet()
print(f'trajectory shape: {trajectory.shape}')
for timestep in range(trajectory.shape[0] - 1):
if trajectory is not None:
for joint in range(n_joints):
# Create line segment for each joint connecting its position at this timestep to the next
start_point = trajectory[timestep, joint]
end_point = trajectory[timestep + 1, joint]
trajectory_line_set.points.append(start_point)
trajectory_line_set.points.append(end_point)
index = len(trajectory_line_set.points) - 2
trajectory_line_set.lines.append([index, index + 1])
trajectory_line_set.colors.append([0, 1, 0]) # Set color for trajectory lines, e.g., green

for timestep in range(seq_len):
# Update point cloud for the current timestep
point_cloud.points = o3d.utility.Vector3dVector(skeleton[timestep])
Expand All @@ -58,6 +74,9 @@ def visualize_skeleton(skeleton: Union[np.ndarray, torch.Tensor],
line_set.points = o3d.utility.Vector3dVector(skeleton[timestep])
line_set.colors = o3d.utility.Vector3dVector([Colors.BLUE.value for _ in connections]) # Blue color for connections

if trajectory is not None:
vis.add_geometry(trajectory_line_set)

if timestep == 0:
vis.add_geometry(point_cloud)
vis.add_geometry(line_set)
Expand Down
33 changes: 12 additions & 21 deletions tools/visualize_skel_movement.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,9 @@
import torch.nn as nn

from skelcast.data.dataset import NTURGBDDataset
from skelcast.data.transforms import MinMaxScaleTransform
from skelcast.primitives.visualize import visualize_skeleton
from skelcast.models.rnn.pvred import PositionalVelocityRecurrentEncoderDecoder
from skelcast.models.transformers.sttf import SpatioTemporalTransformer

argparser = argparse.ArgumentParser(description='Visualize skeleton movement.')
argparser.add_argument('--dataset', type=str, required=True, help='Path to the dataset.')
Expand All @@ -20,33 +21,23 @@
log_format = '[%(asctime)s] %(levelname)s: %(message)s'
date_format = '%Y-%m-%d %H:%M:%S'
logging.basicConfig(level=logging.INFO, format=log_format, datefmt=date_format)

tf = MinMaxScaleTransform(feature_scale=[0.0, 1.0])
dataset = NTURGBDDataset(args.dataset, missing_files_dir='data/missing/', label_file='data/labels.txt',
cache_file=args.cache_file,
max_number_of_bodies=1)
model = PositionalVelocityRecurrentEncoderDecoder(input_dim=75,
enc_hidden_dim=64,
dec_hidden_dim=64,
enc_type='lstm',
dec_type='lstm',
include_velocity=False,
pos_enc=None,
batch_first=True,
use_padded_len_mask=False,
observe_until=20,
use_std_mask=False,
loss_fn=nn.MSELoss())
max_number_of_bodies=1, transforms=tf)
model = SpatioTemporalTransformer(n_joints=25, d_model=256, n_blocks=3, n_heads=8, d_head=16, mlp_dim=512, loss_fn=nn.SmoothL1Loss(), dropout=0.5)
# TODO: Remove the hard coding of the checkpoint path
checkpoint = torch.load('/home/kaseris/Documents/mount/checkpoints_forecasting/heather-head/checkpoint_epoch_99_2023-12-13_115017.pt')
checkpoint = torch.load('/home/kaseris/Documents/mount/checkpoints_forecasting/presto-class/checkpoint_epoch_16_2024-01-05_092620.pt')
model_state_dict = checkpoint['model_state_dict']
model.load_state_dict(model_state_dict)
model = model.to('cpu')
skeleton, label = dataset[args.sample]
seq_len, n_bodies, n_joints, n_dims = skeleton.shape
input_to_model = skeleton.unsqueeze(0)
preds, _ = model(input_to_model.to(torch.float32), y=None, masks=None)
# input_to_model = skeleton.unsqueeze(0)
# preds, _ = model(input_to_model.to(torch.float32), y=None, masks=None)
preds = model.predict(skeleton.to(torch.float32), n_steps=30, observe_from_to=[1, 11])
logging.info(f'preds shape: {preds.shape}')
visualize_skeleton(skeleton.squeeze(1))
preds = preds.view(preds.shape[1], 1, 25, 3)
visualize_skeleton(skeleton.squeeze(1), trajectory=preds.squeeze(0), framerate=5)
# preds = preds.view(preds.shape[1], 1, 25, 3)
# TODO: Visualize the prediction superimposed on the skeleton
visualize_skeleton(preds.detach().squeeze(1), framerate=5)
# visualize_skeleton(preds.detach().squeeze(0))
Loading