A simple crowd density baseline models using Pytorch.
BLOG: https://katnoria.com/crowd-density/
pytorch, numpy, matplotlib, pandas, tensorboardX and tensorboard
You can download the model checkpoints using download_checkpoints.sh
script.
Option 1: Use the train-models notebook under the notebooks folder to train the model.
Option 2: Use the trainer.py script directly to train the model
Use python trainer.py --help
Example: python trainer.py --model vggdecoder --cropsize 224 --epochs 400 --lr 1e-5
Use tensorboard to see the training and test plots. Make sure you start the tensorboard from the correct folder. If you using the notebook to train the model, you'll need to start tensorboard from notebooks folder.
tensorboard --logdir runs --host 0.0.0.0
Make sure you have downloaded the model checkpoints or have locally trained the model.
If you have trained your model locally, you should use the --checkpoint
flag to specify its path.
Evaluate single image
python tester.py --checkpoint "ckpt/vgg16baseline_448_400ep_private-1e-05-0.052820200430.pt" --single ../eval_imgs/has_136_heads.jpg
Save to output
python tester.py --checkpoint "ckpt/vgg16baseline_448_400ep_private-1e-05-0.052820200430.pt" --single ../eval_imgs/has_136_heads.jpg --save True
Evaluate the single image and save the output image. The output image overlays the density map over the input image.
python tester.py --checkpoint "ckpt/vgg16baseline_448_400ep_private-1e-05-0.052820200430.pt" --imagepath "../eval_imgs/*.jpg" --save True
Evaluate the directory full of images
python tester.py --checkpoint "ckpt/vgg16baseline_448_400ep_private-1e-05-0.052820200430.pt" --imagepath "../eval_imgs/*.jpg" --save True
Similarly you can use vggdecoder model to evaluate the images.
python tester.py --model vggdecoder --checkpoint "ckpt/vgg16decoder_448_400ep_private-1e-05-0.050320200501.pt" --single "../eval_imgs/has_136_heads.jpg" --save True
python tester.py --model vggdecoder --checkpoint "ckpt/vgg16decoder_448_400ep_private-1e-05-0.050320200501.pt" --single "/mnt/bigdrive/images/crowd-density.jpg" --save True