Implements the forward-mode auto-differentiation for multivariate functions using the matrix-calculus notation from Magnus and Neudecker (1988). Two key features of the package are: (i) the package incorporates various optimisaton strategies to improve performance; this includes applying memoisation to cut down object construction time, using sparse matrix representation to save derivative calculation, and creating specialised matrix operations with Rcpp to reduce computation time; (ii) the package supports differentiating random variable with respect to their parameters, targetting MCMC (and in general simulation-based) applications.
devtools::install_github("kcf-jackson/ADtools")
Given a function , where , the Jacobina matrix
of w.r.t.
is given by
Consider where is a matrix, and is a vector.
library(ADtools)
f <- function(X, y) X %*% y
X <- randn(2, 2)
y <- matrix(c(1, 1))
print(list(X = X, y = y, f = f(X, y)))
## $X
## [,1] [,2]
## [1,] 0.41331040 0.7085659
## [2,] 0.01066195 -1.2300747
##
## $y
## [,1]
## [1,] 1
## [2,] 1
##
## $f
## [,1]
## [1,] 1.121876
## [2,] -1.219413
Since has dimension (2, 2) and has dimension (2, 1), the input space has dimension , and the output has dimension , i.e. maps to and the Jacobian of should be .
# Full Jacobian matrix
f_AD <- auto_diff(f, at = list(X = X, y = y))
f_AD@dx # returns a Jacobian matrix
## d_X1 d_X2 d_X3 d_X4 d_y1 d_y2
## d_output_1 1 0 1 0 0.41331040 0.7085659
## d_output_2 0 1 0 1 0.01066195 -1.2300747
auto_diff
also supports computing a partial Jacobian matrix. For
instance, suppose we are only interested in the derivative w.r.t. y
,
then we can run
f_AD <- auto_diff(f, at = list(X = X, y = y), wrt = "y")
f_AD@dx # returns a partial Jacobian matrix
## d_y1 d_y2
## d_output_1 0.41331040 0.7085659
## d_output_2 0.01066195 -1.2300747
It is good practice to always check the result with finite-differencing.
This can be done by calling finite_diff
which has the same interface
as auto_diff
.
f_FD <- finite_diff(f, at = list(X = X, y = y))
f_FD
## d_X1 d_X2 d_X3 d_X4 d_y1 d_y2
## d_output_1 1 0 1 0 0.41331039 0.7085659
## d_output_2 0 1 0 1 0.01066194 -1.2300747
set.seed(123)
n <- 1000
p <- 3
X <- randn(n, p)
beta <- randn(p, 1)
y <- X %*% beta + rnorm(n)
gradient_descent <- function(f, vary, fix, learning_rate = 0.01, tol = 1e-6, show = F) {
repeat {
df <- auto_diff(f, at = append(vary, fix), wrt = names(vary))
if (show) print(df@x)
delta <- learning_rate * as.numeric(df@dx)
vary <- relist(unlist(vary) - delta, vary)
if (max(abs(delta)) < tol) break
}
vary
}
lm_loss <- function(y, X, beta) sum((y - X %*% beta)^2)
# Estimate
gradient_descent(
f = lm_loss, vary = list(beta = rnorm(p, 1)), fix = list(y = y, X = X), learning_rate = 1e-4
)
## $beta
## [1] -0.1417494 -0.3345771 -1.4484226
# Truth
t(beta)
## [,1] [,2] [,3]
## [1,] -0.1503075 -0.3277571 -1.448165
set.seed(123)
n <- 30 # small data
p <- 10
X <- randn(n, p)
beta <- randn(p, 1)
y <- X %*% beta + rnorm(n)
gibbs_gaussian <- function(X, y, b_0, B_0, alpha_0, delta_0, num_steps = 1e4) {
# Initialisation
init_sigma <- 1 / sqrt(rgamma0(1, alpha_0 / 2, scale = 2 / delta_0))
n <- length(y)
alpha_1 <- alpha_0 + n
sigma_g <- init_sigma
inv_B_0 <- solve(B_0)
inv_B_0_times_b_0 <- inv_B_0 %*% b_0
XTX <- crossprod(X)
XTy <- crossprod(X, y)
beta_res <- vector("list", num_steps)
sigma_res <- vector("list", num_steps)
pb <- txtProgressBar(1, num_steps, style = 3)
for (i in 1:num_steps) {
# Update beta
B_g <- solve(sigma_g^(-2) * XTX + inv_B_0)
b_g <- B_g %*% (sigma_g^(-2) * XTy + inv_B_0_times_b_0)
beta_g <- t(rmvnorm0(1, b_g, B_g))
# Update sigma
delta_g <- delta_0 + sum((y - X %*% beta_g)^2)
sigma_g <- 1 / sqrt(rgamma0(1, alpha_1 / 2, scale = 2 / delta_g))
# Keep track
beta_res[[i]] <- beta_g
sigma_res[[i]] <- sigma_g
setTxtProgressBar(pb, i)
}
list(sigma = sigma_res, beta = beta_res)
}
gibbs_deriv <- auto_diff(
gibbs_gaussian,
at = list(
b_0 = numeric(p), B_0 = diag(p), alpha_0 = 4, delta_0 = 4,
X = X, y = y, num_steps = 5000
),
wrt = c("b_0", "B_0", "alpha_0", "delta_0")
)
library(magrittr)
library(knitr)
library(kableExtra)
matrix_ls_to_array <- function(x) {
structure(unlist(x), dim = c(dim(x[[1]]), length(x)), dimnames = dimnames(x[[1]]))
}
tidy_mcmc <- function(mcmc_res, var0) {
mcmc_res[[var0]] %>%
purrr::map(~.x@dx) %>%
matrix_ls_to_array()
}
tidy_table <- function(x) {
x %>% kable() %>% kable_styling() %>% scroll_box(width = "100%")
}
posterior_Jacobian <- apply(tidy_mcmc(gibbs_deriv, "beta"), c(1,2), mean)
tidy_table(posterior_Jacobian)
d_b_01 |
d_b_02 |
d_b_03 |
d_b_04 |
d_b_05 |
d_b_06 |
d_b_07 |
d_b_08 |
d_b_09 |
d_b_010 |
d_B_01 |
d_B_02 |
d_B_03 |
d_B_04 |
d_B_05 |
d_B_06 |
d_B_07 |
d_B_08 |
d_B_09 |
d_B_010 |
d_B_011 |
d_B_012 |
d_B_013 |
d_B_014 |
d_B_015 |
d_B_016 |
d_B_017 |
d_B_018 |
d_B_019 |
d_B_020 |
d_B_021 |
d_B_022 |
d_B_023 |
d_B_024 |
d_B_025 |
d_B_026 |
d_B_027 |
d_B_028 |
d_B_029 |
d_B_030 |
d_B_031 |
d_B_032 |
d_B_033 |
d_B_034 |
d_B_035 |
d_B_036 |
d_B_037 |
d_B_038 |
d_B_039 |
d_B_040 |
d_B_041 |
d_B_042 |
d_B_043 |
d_B_044 |
d_B_045 |
d_B_046 |
d_B_047 |
d_B_048 |
d_B_049 |
d_B_050 |
d_B_051 |
d_B_052 |
d_B_053 |
d_B_054 |
d_B_055 |
d_B_056 |
d_B_057 |
d_B_058 |
d_B_059 |
d_B_060 |
d_B_061 |
d_B_062 |
d_B_063 |
d_B_064 |
d_B_065 |
d_B_066 |
d_B_067 |
d_B_068 |
d_B_069 |
d_B_070 |
d_B_071 |
d_B_072 |
d_B_073 |
d_B_074 |
d_B_075 |
d_B_076 |
d_B_077 |
d_B_078 |
d_B_079 |
d_B_080 |
d_B_081 |
d_B_082 |
d_B_083 |
d_B_084 |
d_B_085 |
d_B_086 |
d_B_087 |
d_B_088 |
d_B_089 |
d_B_090 |
d_B_091 |
d_B_092 |
d_B_093 |
d_B_094 |
d_B_095 |
d_B_096 |
d_B_097 |
d_B_098 |
d_B_099 |
d_B_0100 |
d_alpha_01 |
d_delta_01 |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d_output_1 |
0.0569887 |
0.0240169 |
-0.0085018 |
-0.0114905 |
-0.0002056 |
-0.0099043 |
0.0069673 |
-0.0250403 |
-0.0138359 |
0.0184303 |
-0.0441342 |
-0.0186824 |
0.0065791 |
0.0089195 |
0.0001676 |
0.0077123 |
-0.0054299 |
0.0194540 |
0.0107661 |
-0.0143304 |
-0.0422326 |
-0.0177185 |
0.0062827 |
0.0085277 |
0.0001388 |
0.0073738 |
-0.0051957 |
0.0186088 |
0.0102891 |
-0.0137093 |
-0.0548737 |
-0.0230575 |
0.0082968 |
0.0110663 |
0.0001859 |
0.0095235 |
-0.0066902 |
0.0241129 |
0.0132928 |
-0.0177620 |
-0.0718000 |
-0.0302760 |
0.0107191 |
0.0145789 |
0.0002573 |
0.0124716 |
-0.0087673 |
0.0315428 |
0.0174258 |
-0.0232140 |
-0.0156627 |
-0.0065633 |
0.0023708 |
0.0031359 |
0.0001308 |
0.0027179 |
-0.0019058 |
0.0068750 |
0.0037912 |
-0.0050542 |
0.0418913 |
0.0176076 |
-0.0062615 |
-0.0084694 |
-0.0001351 |
-0.0071959 |
0.0051419 |
-0.0184411 |
-0.0101835 |
0.0135673 |
-0.1016804 |
-0.0428326 |
0.0151174 |
0.0204964 |
0.0003181 |
0.0176513 |
-0.0123461 |
0.0446991 |
0.0246896 |
-0.0329021 |
0.0099753 |
0.0042146 |
-0.0014552 |
-0.0019818 |
-0.0000670 |
-0.0017475 |
0.0011945 |
-0.0043029 |
-0.0024432 |
0.0032439 |
0.0687012 |
0.0289268 |
-0.0102440 |
-0.0138316 |
-0.0001937 |
-0.0119421 |
0.0084227 |
-0.0302179 |
-0.0166070 |
0.0222462 |
0.1152496 |
0.0486374 |
-0.0171780 |
-0.0232862 |
-0.0003697 |
-0.0199968 |
0.0140737 |
-0.0506390 |
-0.0280183 |
0.0373722 |
-0.0018965 |
0.0016811 |
d_output_2 |
0.0240377 |
0.0904281 |
0.0127987 |
-0.0154678 |
0.0011496 |
-0.0297209 |
0.0192483 |
-0.0162636 |
-0.0265724 |
0.0235886 |
-0.0183982 |
-0.0700067 |
-0.0099287 |
0.0119620 |
-0.0008713 |
0.0230590 |
-0.0149584 |
0.0126714 |
0.0206031 |
-0.0183164 |
-0.0177858 |
-0.0670336 |
-0.0095958 |
0.0114911 |
-0.0009177 |
0.0222430 |
-0.0144052 |
0.0121760 |
0.0198080 |
-0.0176238 |
-0.0232262 |
-0.0869873 |
-0.0120353 |
0.0149244 |
-0.0011250 |
0.0286433 |
-0.0185164 |
0.0156581 |
0.0255766 |
-0.0227551 |
-0.0303404 |
-0.1139404 |
-0.0160980 |
0.0197683 |
-0.0014266 |
0.0374066 |
-0.0242106 |
0.0204458 |
0.0334838 |
-0.0296973 |
-0.0066046 |
-0.0247385 |
-0.0034116 |
0.0041890 |
-0.0001068 |
0.0081420 |
-0.0052474 |
0.0044657 |
0.0072442 |
-0.0064331 |
0.0176188 |
0.0663741 |
0.0094205 |
-0.0114027 |
0.0009022 |
-0.0216447 |
0.0141864 |
-0.0120085 |
-0.0195519 |
0.0173548 |
-0.0428613 |
-0.1613073 |
-0.0230086 |
0.0275584 |
-0.0021971 |
0.0529932 |
-0.0341142 |
0.0290588 |
0.0474033 |
-0.0421258 |
0.0040008 |
0.0157923 |
0.0023707 |
-0.0025788 |
0.0001263 |
-0.0052141 |
0.0032759 |
-0.0025446 |
-0.0046489 |
0.0041278 |
0.0289120 |
0.1089914 |
0.0154794 |
-0.0185779 |
0.0015487 |
-0.0358662 |
0.0232800 |
-0.0196546 |
-0.0318409 |
0.0285183 |
0.0487821 |
0.1830006 |
0.0259046 |
-0.0314158 |
0.0024403 |
-0.0600001 |
0.0388629 |
-0.0329070 |
-0.0538610 |
0.0480035 |
-0.0051331 |
0.0045483 |
d_output_3 |
-0.0085091 |
0.0128582 |
0.0606947 |
0.0018708 |
0.0093748 |
-0.0038372 |
-0.0124373 |
0.0108905 |
-0.0013585 |
0.0035816 |
0.0066996 |
-0.0100238 |
-0.0470345 |
-0.0014486 |
-0.0072611 |
0.0030017 |
0.0096190 |
-0.0084236 |
0.0010817 |
-0.0028071 |
0.0064625 |
-0.0094615 |
-0.0454735 |
-0.0014125 |
-0.0070568 |
0.0028694 |
0.0093231 |
-0.0081605 |
0.0009901 |
-0.0026940 |
0.0081889 |
-0.0123584 |
-0.0585021 |
-0.0017899 |
-0.0090490 |
0.0037064 |
0.0120127 |
-0.0105169 |
0.0013044 |
-0.0034779 |
0.0106775 |
-0.0162045 |
-0.0763825 |
-0.0022640 |
-0.0117940 |
0.0048318 |
0.0156772 |
-0.0137081 |
0.0017181 |
-0.0045021 |
0.0023308 |
-0.0035036 |
-0.0166668 |
-0.0005309 |
-0.0025077 |
0.0010566 |
0.0034371 |
-0.0029829 |
0.0003518 |
-0.0009703 |
-0.0063362 |
0.0093897 |
0.0447738 |
0.0013822 |
0.0069415 |
-0.0027284 |
-0.0091884 |
0.0080518 |
-0.0009880 |
0.0026380 |
0.0152430 |
-0.0228882 |
-0.1084255 |
-0.0033729 |
-0.0168030 |
0.0068048 |
0.0223176 |
-0.0194609 |
0.0023904 |
-0.0063921 |
-0.0015991 |
0.0022439 |
0.0107478 |
0.0003773 |
0.0016300 |
-0.0006714 |
-0.0022394 |
0.0020392 |
-0.0002404 |
0.0006235 |
-0.0103342 |
0.0154750 |
0.0733211 |
0.0022912 |
0.0113836 |
-0.0046196 |
-0.0150125 |
0.0131633 |
-0.0015559 |
0.0043453 |
-0.0171223 |
0.0260386 |
0.1225932 |
0.0037405 |
0.0189755 |
-0.0077206 |
-0.0251427 |
0.0219994 |
-0.0027912 |
0.0073362 |
-0.0016336 |
0.0014212 |
d_output_4 |
-0.0115148 |
-0.0155222 |
0.0018741 |
0.0538145 |
-0.0020646 |
0.0030748 |
-0.0087192 |
0.0141244 |
0.0141004 |
-0.0121362 |
0.0090350 |
0.0119581 |
-0.0015009 |
-0.0416657 |
0.0016067 |
-0.0023328 |
0.0067214 |
-0.0109202 |
-0.0108953 |
0.0093877 |
0.0087038 |
0.0117329 |
-0.0014675 |
-0.0402955 |
0.0015294 |
-0.0022764 |
0.0065180 |
-0.0105615 |
-0.0105698 |
0.0090910 |
0.0111127 |
0.0150710 |
-0.0017092 |
-0.0520296 |
0.0019920 |
-0.0029658 |
0.0084436 |
-0.0136627 |
-0.0136540 |
0.0117369 |
0.0144505 |
0.0195160 |
-0.0023350 |
-0.0675164 |
0.0026036 |
-0.0038820 |
0.0109700 |
-0.0177700 |
-0.0177239 |
0.0152723 |
0.0031468 |
0.0042670 |
-0.0004861 |
-0.0148352 |
0.0006424 |
-0.0008148 |
0.0024087 |
-0.0038815 |
-0.0038776 |
0.0033266 |
-0.0085681 |
-0.0115627 |
0.0013937 |
0.0396951 |
-0.0015198 |
0.0023721 |
-0.0064352 |
0.0104493 |
0.0104159 |
-0.0090011 |
0.0206229 |
0.0278116 |
-0.0034118 |
-0.0961119 |
0.0036398 |
-0.0055483 |
0.0156814 |
-0.0252497 |
-0.0252152 |
0.0216987 |
-0.0021391 |
-0.0027703 |
0.0003903 |
0.0095449 |
-0.0003900 |
0.0005380 |
-0.0015780 |
0.0026081 |
0.0025117 |
-0.0021678 |
-0.0139711 |
-0.0188096 |
0.0022905 |
0.0650464 |
-0.0024392 |
0.0037289 |
-0.0105230 |
0.0170629 |
0.0171256 |
-0.0146613 |
-0.0232066 |
-0.0313395 |
0.0037780 |
0.1086399 |
-0.0041298 |
0.0062744 |
-0.0176437 |
0.0285431 |
0.0284539 |
-0.0244253 |
-0.0016562 |
0.0014197 |
d_output_5 |
-0.0002015 |
0.0011602 |
0.0093305 |
-0.0021301 |
0.0416820 |
0.0063474 |
-0.0124201 |
-0.0084977 |
0.0127248 |
0.0140695 |
0.0000392 |
-0.0009037 |
-0.0072236 |
0.0016548 |
-0.0322917 |
-0.0049382 |
0.0096484 |
0.0065554 |
-0.0098702 |
-0.0108998 |
0.0000799 |
-0.0010397 |
-0.0070015 |
0.0015956 |
-0.0311980 |
-0.0047749 |
0.0093385 |
0.0063402 |
-0.0095232 |
-0.0105459 |
0.0002337 |
-0.0011615 |
-0.0091311 |
0.0019994 |
-0.0403015 |
-0.0061458 |
0.0119972 |
0.0082189 |
-0.0123143 |
-0.0135727 |
0.0002891 |
-0.0014201 |
-0.0117045 |
0.0025540 |
-0.0522549 |
-0.0079484 |
0.0155687 |
0.0106572 |
-0.0159636 |
-0.0176338 |
0.0000658 |
-0.0003473 |
-0.0025924 |
0.0005953 |
-0.0115158 |
-0.0017385 |
0.0033803 |
0.0023231 |
-0.0034806 |
-0.0038647 |
-0.0000968 |
0.0009752 |
0.0069060 |
-0.0015688 |
0.0307289 |
0.0045695 |
-0.0091735 |
-0.0062613 |
0.0093726 |
0.0104121 |
0.0003115 |
-0.0021644 |
-0.0166177 |
0.0038501 |
-0.0743845 |
-0.0112928 |
0.0220746 |
0.0151891 |
-0.0226929 |
-0.0251613 |
0.0000843 |
0.0002798 |
0.0016057 |
-0.0004489 |
0.0073900 |
0.0011070 |
-0.0021410 |
-0.0016478 |
0.0022166 |
0.0025215 |
-0.0001848 |
0.0014832 |
0.0112817 |
-0.0026156 |
0.0503344 |
0.0076649 |
-0.0150416 |
-0.0102730 |
0.0152763 |
0.0170167 |
-0.0004861 |
0.0022518 |
0.0188271 |
-0.0042536 |
0.0841183 |
0.0127844 |
-0.0250641 |
-0.0171571 |
0.0257523 |
0.0282801 |
0.0021382 |
-0.0018787 |
d_output_6 |
-0.0098928 |
-0.0297162 |
-0.0037695 |
0.0030480 |
0.0063663 |
0.0552486 |
-0.0143575 |
0.0052084 |
0.0107802 |
0.0029326 |
0.0074214 |
0.0230069 |
0.0029022 |
-0.0022937 |
-0.0049406 |
-0.0428277 |
0.0111680 |
-0.0040983 |
-0.0083541 |
-0.0022415 |
0.0072248 |
0.0217703 |
0.0027583 |
-0.0020931 |
-0.0046577 |
-0.0413635 |
0.0107642 |
-0.0039331 |
-0.0079740 |
-0.0022010 |
0.0096220 |
0.0285772 |
0.0033567 |
-0.0029425 |
-0.0061197 |
-0.0534077 |
0.0138521 |
-0.0050280 |
-0.0103800 |
-0.0028076 |
0.0124796 |
0.0373442 |
0.0047290 |
-0.0041209 |
-0.0080016 |
-0.0692467 |
0.0179884 |
-0.0065145 |
-0.0135446 |
-0.0036905 |
0.0027195 |
0.0080265 |
0.0009267 |
-0.0007802 |
-0.0019473 |
-0.0150756 |
0.0038894 |
-0.0014342 |
-0.0029022 |
-0.0008212 |
-0.0071938 |
-0.0216834 |
-0.0027394 |
0.0022030 |
0.0046396 |
0.0405590 |
-0.0106023 |
0.0038578 |
0.0079088 |
0.0022191 |
0.0175856 |
0.0529079 |
0.0068558 |
-0.0053461 |
-0.0112332 |
-0.0985946 |
0.0253945 |
-0.0093039 |
-0.0191869 |
-0.0052745 |
-0.0015026 |
-0.0050982 |
-0.0007503 |
0.0003666 |
0.0011963 |
0.0097106 |
-0.0024161 |
0.0006043 |
0.0018568 |
0.0005551 |
-0.0118376 |
-0.0357508 |
-0.0045558 |
0.0035470 |
0.0075299 |
0.0667830 |
-0.0173927 |
0.0063052 |
0.0127777 |
0.0035293 |
-0.0201816 |
-0.0602960 |
-0.0076860 |
0.0063388 |
0.0127583 |
0.1115422 |
-0.0289714 |
0.0105507 |
0.0219431 |
0.0056070 |
0.0048153 |
-0.0042268 |
d_output_7 |
0.0069446 |
0.0192320 |
-0.0124953 |
-0.0086532 |
-0.0124090 |
-0.0143473 |
0.0558417 |
-0.0146184 |
-0.0051602 |
-0.0035448 |
-0.0051272 |
-0.0148759 |
0.0097013 |
0.0066371 |
0.0096298 |
0.0111660 |
-0.0432957 |
0.0113787 |
0.0040087 |
0.0027347 |
-0.0050374 |
-0.0139463 |
0.0094648 |
0.0063540 |
0.0092342 |
0.0107642 |
-0.0418240 |
0.0109867 |
0.0038158 |
0.0026658 |
-0.0067943 |
-0.0184984 |
0.0123624 |
0.0084440 |
0.0120081 |
0.0139189 |
-0.0540180 |
0.0141399 |
0.0049925 |
0.0034015 |
-0.0087916 |
-0.0242142 |
0.0156719 |
0.0111644 |
0.0156054 |
0.0179926 |
-0.0700294 |
0.0183071 |
0.0065053 |
0.0044500 |
-0.0019214 |
-0.0051924 |
0.0035041 |
0.0023222 |
0.0036054 |
0.0039501 |
-0.0152366 |
0.0040064 |
0.0013745 |
0.0009905 |
0.0050195 |
0.0139367 |
-0.0093230 |
-0.0063717 |
-0.0091359 |
-0.0103301 |
0.0413188 |
-0.0108259 |
-0.0037585 |
-0.0026864 |
-0.0123397 |
-0.0342099 |
0.0222600 |
0.0153796 |
0.0220557 |
0.0255470 |
-0.0996328 |
0.0261613 |
0.0091591 |
0.0063636 |
0.0009729 |
0.0032416 |
-0.0021301 |
-0.0013462 |
-0.0022680 |
-0.0025112 |
0.0097469 |
-0.0022555 |
-0.0008595 |
-0.0006834 |
0.0082659 |
0.0230507 |
-0.0151265 |
-0.0103304 |
-0.0148400 |
-0.0173030 |
0.0675348 |
-0.0176816 |
-0.0059760 |
-0.0042830 |
0.0142285 |
0.0391065 |
-0.0251826 |
-0.0176514 |
-0.0249597 |
-0.0289096 |
0.1127846 |
-0.0295681 |
-0.0105792 |
-0.0068367 |
-0.0050240 |
0.0044264 |
d_output_8 |
-0.0250804 |
-0.0161938 |
0.0109440 |
0.0141087 |
-0.0084907 |
0.0051460 |
-0.0146053 |
0.0673064 |
0.0047617 |
-0.0103918 |
0.0193901 |
0.0123672 |
-0.0085698 |
-0.0107848 |
0.0066224 |
-0.0038823 |
0.0111201 |
-0.0522336 |
-0.0036282 |
0.0080575 |
0.0187944 |
0.0119589 |
-0.0082823 |
-0.0105283 |
0.0064342 |
-0.0038049 |
0.0108549 |
-0.0505127 |
-0.0035369 |
0.0078282 |
0.0242659 |
0.0156709 |
-0.0106651 |
-0.0137003 |
0.0081853 |
-0.0050257 |
0.0142004 |
-0.0650318 |
-0.0046159 |
0.0100563 |
0.0314683 |
0.0204053 |
-0.0137138 |
-0.0178233 |
0.0105922 |
-0.0065138 |
0.0184283 |
-0.0843316 |
-0.0060171 |
0.0130294 |
0.0068385 |
0.0043584 |
-0.0030011 |
-0.0038238 |
0.0022621 |
-0.0013739 |
0.0038935 |
-0.0183673 |
-0.0012828 |
0.0028227 |
-0.0185725 |
-0.0119098 |
0.0081547 |
0.0104460 |
-0.0063207 |
0.0037169 |
-0.0108092 |
0.0498851 |
0.0035081 |
-0.0076994 |
0.0449804 |
0.0289774 |
-0.0196031 |
-0.0252719 |
0.0153021 |
-0.0091713 |
0.0260506 |
-0.1207382 |
-0.0085237 |
0.0186647 |
-0.0042959 |
-0.0026810 |
0.0019020 |
0.0023368 |
-0.0014871 |
0.0008146 |
-0.0023603 |
0.0116123 |
0.0007876 |
-0.0018047 |
-0.0303050 |
-0.0194974 |
0.0132639 |
0.0170032 |
-0.0103353 |
0.0061868 |
-0.0176369 |
0.0814000 |
0.0056628 |
-0.0125827 |
-0.0507465 |
-0.0328884 |
0.0220748 |
0.0286126 |
-0.0171680 |
0.0104383 |
-0.0296133 |
0.1359903 |
0.0097023 |
-0.0211098 |
0.0015298 |
-0.0013439 |
d_output_9 |
-0.0138377 |
-0.0266094 |
-0.0013464 |
0.0141003 |
0.0127371 |
0.0108331 |
-0.0052421 |
0.0048221 |
0.0530128 |
-0.0142592 |
0.0106016 |
0.0204647 |
0.0009927 |
-0.0108144 |
-0.0098145 |
-0.0083304 |
0.0039921 |
-0.0038836 |
-0.0410147 |
0.0110594 |
0.0103596 |
0.0196407 |
0.0009328 |
-0.0104557 |
-0.0094673 |
-0.0080459 |
0.0037988 |
-0.0038664 |
-0.0396832 |
0.0107345 |
0.0134222 |
0.0256635 |
0.0011410 |
-0.0136421 |
-0.0123035 |
-0.0104722 |
0.0050322 |
-0.0046676 |
-0.0512514 |
0.0138072 |
0.0173695 |
0.0334742 |
0.0017008 |
-0.0178857 |
-0.0160227 |
-0.0136459 |
0.0066662 |
-0.0059179 |
-0.0664936 |
0.0178668 |
0.0037365 |
0.0072135 |
0.0003140 |
-0.0037982 |
-0.0036054 |
-0.0029823 |
0.0015032 |
-0.0012083 |
-0.0144189 |
0.0038367 |
-0.0102321 |
-0.0195538 |
-0.0009581 |
0.0104256 |
0.0093853 |
0.0078496 |
-0.0038132 |
0.0036739 |
0.0392466 |
-0.0105759 |
0.0247708 |
0.0475729 |
0.0024715 |
-0.0252144 |
-0.0227486 |
-0.0193319 |
0.0092072 |
-0.0086815 |
-0.0949740 |
0.0255564 |
-0.0021981 |
-0.0043490 |
-0.0002609 |
0.0022409 |
0.0021664 |
0.0017800 |
-0.0007949 |
0.0006660 |
0.0088741 |
-0.0023693 |
-0.0167036 |
-0.0320287 |
-0.0016078 |
0.0169591 |
0.0152770 |
0.0130280 |
-0.0062642 |
0.0059658 |
0.0639315 |
-0.0172731 |
-0.0280732 |
-0.0539748 |
-0.0027756 |
0.0286292 |
0.0256939 |
0.0218936 |
-0.0106074 |
0.0097172 |
0.1072256 |
-0.0290052 |
0.0027076 |
-0.0023674 |
d_output_10 |
0.0183998 |
0.0235696 |
0.0035820 |
-0.0121090 |
0.0140323 |
0.0028750 |
-0.0034804 |
-0.0103564 |
-0.0142733 |
0.0604927 |
-0.0145180 |
-0.0181169 |
-0.0026837 |
0.0092915 |
-0.0108873 |
-0.0023307 |
0.0028632 |
0.0081400 |
0.0110213 |
-0.0467783 |
-0.0140121 |
-0.0179260 |
-0.0025975 |
0.0089999 |
-0.0105325 |
-0.0022815 |
0.0028046 |
0.0079632 |
0.0107114 |
-0.0453199 |
-0.0177544 |
-0.0229244 |
-0.0036911 |
0.0116933 |
-0.0135718 |
-0.0027779 |
0.0033604 |
0.0100647 |
0.0138165 |
-0.0584723 |
-0.0229918 |
-0.0295581 |
-0.0045324 |
0.0150177 |
-0.0176017 |
-0.0035554 |
0.0042804 |
0.0129093 |
0.0178981 |
-0.0758737 |
-0.0050233 |
-0.0064541 |
-0.0010407 |
0.0033427 |
-0.0040061 |
-0.0008135 |
0.0009901 |
0.0029355 |
0.0039354 |
-0.0164856 |
0.0137477 |
0.0177026 |
0.0026546 |
-0.0089431 |
0.0103514 |
0.0019110 |
-0.0025516 |
-0.0076565 |
-0.0106108 |
0.0448584 |
-0.0330814 |
-0.0424295 |
-0.0063049 |
0.0217503 |
-0.0250430 |
-0.0050663 |
0.0060199 |
0.0185659 |
0.0256592 |
-0.1084753 |
0.0033399 |
0.0040222 |
0.0004825 |
-0.0021145 |
0.0024388 |
0.0005097 |
-0.0005756 |
-0.0020969 |
-0.0024352 |
0.0102202 |
0.0223668 |
0.0286054 |
0.0042865 |
-0.0146718 |
0.0168359 |
0.0034689 |
-0.0042721 |
-0.0125683 |
-0.0174525 |
0.0730667 |
0.0369782 |
0.0475096 |
0.0072398 |
-0.0244064 |
0.0282180 |
0.0056742 |
-0.0068803 |
-0.0207674 |
-0.0287255 |
0.1219028 |
0.0038724 |
-0.0033642 |