Skip to content

kito129/betfairHitoricalRawDataConversion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RAW BETFAIR TO MY JSON

These are the required project specifications. All material is based on the code contained in /code

I ask that you follow the project specifications strictly, but feel free to make the best changes necessary to make the code robust, reliable, and performant as it will be the basis of a very large project I plan to develop.

The code for the moment logs little data but I would like that for each task done are shown on screen the metrics of each step For example: Total files to process Total corrected files Total runners generated Eventual errors at run time or raw files not conforming to the specifications

The following docs index:

Specification

  • Other Repo

  • Raw Data definition

  • Downloading RAW data from Betfair

  • Extracting the archives and dividing by sport and data type

  • Creation of the temporal data frame

  • Splitting of data and first JSON

  • Data conversion into specification

  • Correction of temporal bugs

  • Save metadata quotas and runners

  • Runner list creation

  • Saving and split in folders of final files


Other repo

Some repo and links related to the project

Raw Data definition

The database on which we will operate will be purchased from Betfair exchange and will include all the matches on the platform, with information about:

  • The market event information
  • The market updates (event OPEN, SUSPENDED, CLOSED, the status of inPlay and betDelay..).
  • The runner's information (the competitors of the event)
  • The odds (price, volume and available prices to bet).

Additional data information ( such as final result, bookmaker odds and some stats) that will be add over a

This is a sample of market Djokovic v Medvedev of 12/09/2021

ADVANCED1.187528277.bz2.json

BASIC1.187528277.bz2.json

As you can see this is a list of Market change in the time (pt is published time), and the main propose is to convert this time data in

  • A single version of market info (event, name, time, open date and all info about the market) -> from now on we will call it MarketInfo
  • A single version of market runners, all info about runners of the markets (id, name, position...) -> from now on we will call it MarketRunners
  • The odd information during the time about all runners in the market (time of update, price, volume and available prices...) -> from now on we will call it MarketPrices
  • The update of the market during the time (open, suspended market, in play, event start, event closed...) -> from now on we will call it MarketUpdates

As you can see there are two types of data:

  • BASIC
  • ADVANCED

Both contain the same information, but

  • ADVANCED has updates every second and complex odds data (time, odds, traded volume, available to bet)
  • BASIC has updates every minute and the only odds information is only timestamp and last traded prices (odds)

The raw data folder are

each folder contains subfolder

  • /TENNIS
  • /SOCCER
  • /HORSE RACING

Market Specification

Market Sport

# sport
1 HORSE RACING
2 SOCCER
3 TENNIS

Market Type

The market type list you should use

# marketType eventName sport note nOfRunners
1 WIN Winner HORSE RACING winner of the race typical #2 ore more runners, the name of runners, ex: End Zone, State Secretary, Daniel Deronda...
2 MATCH_ODDS Match Odds SOCCER winner of the match #3: 2 name of the team and The Draw, ex: Inter, Juventus, The Draw
3 HALF_TIME Half Time SOCCER winner of the half-time #3: 2 name of the team and The Draw, ex: Inter, Juventus, The Draw
4 BOTH_TEAMS_TO_SCORE Both teams to Score? SOCCER both teams score at least one goal #2: Yes, No
5 OVER_UNDER 05 Over/Under 0.5 Goals SOCCER number of the goals in the match #2: Under 0.5 Goals, Over 0.5 Goals
6 OVER_UNDER 15 Over/Under 1.5 Goals SOCCER number of the goals in the match #2: Under 1.5 Goals, Over 1.5 Goals
7 OVER_UNDER 25 Over/Under 2.5 Goals SOCCER number of the goals in the match #2: Under 2.5 Goals, Over 2.5 Goals
8 OVER_UNDER 35 Over/Under 3.5 Goals SOCCER number of the goals in the match #2: Under 3.5 Goals, Over 3.5 Goals
9 OVER_UNDER 45 Over/Under 4.5 Goals SOCCER number of the goals in the match #2: Under 4.5 Goals, Over 4.5 Goals
10 OVER_UNDER 55 Over/Under 5.5 Goals SOCCER number of the goals in the match #2: Under 5.5 Goals, Over 5.5 Goals
11 FIRST_HALF_GOALS_05 First Half Goals 0.5 SOCCER number of the goals in the half-time #2: Under 0.5 Goals, Over 0.5 Goals
12 FIRST_HALF_GOALS_15 First Half Goals 1.5 SOCCER number of the goals in the half-time #2: Under 1.5 Goals, Over 1.5 Goals
13 FIRST_HALF_GOALS_25 First Half Goals 2.5 SOCCER number of the goals in the half-time #2: Under 2.5 Goals, Over 2.5 Goals
14 FIRST_HALF_GOALS_35 First Half Goals 3.5 SOCCER number of the goals in the half-time #2: Under 3.5 Goals, Over 3.5 Goals
15 CORRECT_SCORE Correct Score SOCCER correct result of the match typical #16 +#3 always present: 0-0, 0-1, 0-2, 0-3, 1-0, 2-0, 3-0, 1-2, 2-1, 3-1, 1-3, 3-2, 2-3,1-1, 2-2, 3-3, Any Other Home Win, Any Other Away Win, Any Other Draw
16 MATCH_ODDS Match Odds TENNIS winner of the match #2: the player Name ex. Novak Djokovic, Daniil Medvedev

TASK TO DO

1- Download data and Extract principal ZIP

The first process to do is to download the data form Betfair This process includes purchase and authentication task, so I don't want to automate that process.

I will provide you a sample of data to working about. Then I will use for my self the code over all data to create my personal db.

The code should be run once a day, as the data is released after 5 days from the end of the event. So this code will need to be run once a day to add the newly downloaded markets to the DB.

Every day I will place the data in the /rawData (separated in SPORT) folder and start the code.

I'll put all the .bz2 archive in this folders

rawData/BASIC/SOCCER/ rawData/BASIC/TENNIS/ rawData/BASIC/HORSE RACING/

rawData/ADVANCED/SOCCER/ rawData/ADVANCED/TENNIS/ rawData/ADVANCED/HORSE RACING/

2- Extract all market

The current code start with placing the correct folder to analyze in the path (we fix to convert all path in the same time) code/routine.py

  python routine.py
# the path were al files are extracted, you have to sperate file extracted by sport and by type of data
workPath = 'D:/00_PROJECTs/40_betfair/rawDataConversion/rawDataConversion/code/rawInput/'

# the path were i will place the file to be converted
data_ADVANCED_SOCCER = 'D:/00_PROJECTs/40_betfair/rawDataConversion/rawDataConversion/rawData/ADVANCED/SOCCER/'
data_ADVANCED_TENNIS = 'D:/00_PROJECTs/40_betfair/rawDataConversion/rawDataConversion/rawData/ADVANCED/TENNIS/'
data_ADVANCED_HORSE_RACING = 'D:/00_PROJECTs/40_betfair/rawDataConversion/rawDataConversion/rawData/ADVANCED/HORSE RACING/'

data_BASIC_SOCCER = 'D:/00_PROJECTs/40_betfair/rawDataConversion/rawDataConversion/rawData/BASIC/SOCCER/'
data_BASIC_TENNIS = 'D:/00_PROJECTs/40_betfair/rawDataConversion/rawDataConversion/rawData/BASIC/TENNIS/'
data_BASIC_HORSE_RACING = 'D:/00_PROJECTs/40_betfair/rawDataConversion/rawDataConversion/rawData/BASIC/HORSE RACING/'

# have to run for all above folder

# start the routine
main.main(data_BASIC_HORSE_RACING,workPath,'BASIC')

For the moment the code runs one folder at a time and I have to change the path, but in the new project it should do everything together and eventually divide the markets again by type (ADV / BASIC) and by sport

We hould extract the .bz2 archive in all sub folder and save as JSON

I created this code, that you have to fix and improve with sport differentiation and type too (BASIC / ADVANCED)

# ##
#  --- IMPORT ---
# ##
import os
import bz2
import json


# loop on all folder in path and extract bz2 to JSON file
def extractJson(dataPath, extractPath):
    print("\nExtracting File...")
    countOK = 0
    for (dirpath, dirnames, files) in os.walk(dataPath):
        for fileName in files:
            # filter out decompressed files
            if fileName.endswith('.json'):
                continue

            # save file as .json
            filepath = os.path.join(dirpath, fileName)
            newFilepath = extractPath + fileName + '.json'
           

            # save JSON file
            with open(newFilepath, 'wb') as new_file, bz2.BZ2File(filepath, 'rb') as file:
                for data in iter(lambda: file.read(), b''):
                    new_file.write(data)
            file.close()
            countOK = countOK +1

    # print recap
    print("Files Extracted: " + str(countOK))
    print('\nEnd of extraction..\n')

At the end of this process we could have a folder ( at the moment i didn't implement the sport division)

code/rawInput/BASIC/SOCCER/ code/rawInput/BASIC/TENNIS/ code/rawInput/BASIC/HORSE RACING/

code/rawInput/ADVANCED/SOCCER/ code/rawInput/ADVANCED/TENNIS/ code/rawInput/ADVANCED/HORSE RACING/

contains all raw archive data converted to correct JSON format

3- Convert to JSONv1

Now start the real conversion task.

Panda dataframe and line separation

code/dataframe.py is were the code made this dataframe creation and division about type lines and different info

I convert this 1.1.187528277.json to a panda dataframe in order to separate all lines and save the pt (publish time in milliseconds UTC)

There will be 2 different types of line:

WE HAVE TO REMOVE ALL THE FILE THAT NOT CONTAINS AT LEST ONE MARKET CHANGE AND HAVE LESS THAT 50 PRICE CHANGES

MARKET CHANGES

This one have "mc" props, inside that "marketDefinition" props and not "rc" props

{
  "op": "mcm",
  "clk": "4210380045",
  "pt": 1631334824468,
  "mc": [
    {
      "id": "1.187528277",
      "marketDefinition": {
        "bspMarket": false,
        "turnInPlayEnabled": true,
        "persistenceEnabled": true,
        "marketBaseRate": 5.0,
        "eventId": 30891863,
        "eventTypeId": "2",
        "numberOfWinners": 1,
        "bettingType": "ODDS",
        "marketType": "MATCH_ODDS",
        "marketTime": "2021-09-12T20:00:00.000Z",
        "suspendTime": "2021-09-12T20:00:00.000Z",
        "bspReconciled": false,
        "complete": true,
        "inPlay": false,
        "crossMatching": true,
        "runnersVoidable": false,
        "numberOfActiveRunners": 2,
        "betDelay": 0,
        "status": "OPEN",
        "runners": [
          {
            "status": "ACTIVE",
            "sortPriority": 1,
            "id": 2249229,
            "name": "Novak Djokovic"
          },
          {
            "status": "ACTIVE",
            "sortPriority": 2,
            "id": 19924831,
            "name": "Daniil Medvedev"
          }
        ],
        "regulators": [
          "MR_INT"
        ],
        "countryCode": "US",
        "discountAllowed": true,
        "timezone": "Europe/London",
        "openDate": "2021-09-12T20:00:00.000Z",
        "version": 4023449846,
        "name": "Match Odds",
        "eventName": "Djokovic v Medvedev"
      }
    }
  ]
}

ODDS UPDATE

This one have "mc" props, inside that ahve "rc" props and not "marketDefinition" props

{
  "op": "mcm",
  "clk": "4211879304",
  "pt": 1631350227393,
  "mc": [
    {
      "id": "1.187528277",
      "rc": [
        {
          "batl": [
            [0,3.4,75.81 ]
          ],
          "ltp": 3.35,
          "tv": 3392.42,
          "id": 19924831
        },
        {
          "trd": [
            [1.42,11327.93]
          ],
          "batb": [
            [ 0,1.42, 38.05],
            [1,1.41,1604.61],
            [2,1.4,551.3]
          ],
          "batl": [
            [0,1.43,1790.57],
            [1,1.44,927.71],
            [2,1.45,1399.42]
          ],
          "ltp": 1.42,
          "tv": 16440.85,
          "id": 2249229
        }
      ]
    }
  ],
  .....
}

At the end of process of dataframe creation we could have this division

mainObj = {
  'market': getMarketDataframe(path),
  'runners': getRunnerDataframe(path),
  'odds': getPricesDataframe(path, status)
}

This is an example of data contained

mainObj['market']

publish_time id eventId marketType openDate status eventName name betDelay inPlay complete numberOfActiveRunners version
0 2021-09-11 03:27:17.213000 1.18753 30891863 MATCH_ODDS 2021-09-12T15:00:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4023427524
1 2021-09-11 03:27:18.736000 1.18753 30891863 MATCH_ODDS 2021-09-12T15:00:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4023427524
2 2021-09-11 04:33:40.969000 1.18753 30891863 MATCH_ODDS 2021-09-12T15:00:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4023449846
3 2021-09-11 04:33:44.468000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z OPEN Djokovic @ Medvedev Match Odds 0 False True 2 4023449846
4 2021-09-11 05:58:50.202000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z SUSPENDED Djokovic v Medvedev Match Odds 0 False True 2 4023467671
5 2021-09-11 05:58:59.435000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4023468035
6 2021-09-12 20:01:53.477000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4029685094
7 2021-09-12 20:01:55.685000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:15:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4029685094
8 2021-09-12 20:11:58.503000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:15:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4029701160
9 2021-09-12 20:12:01.419000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4029701160
10 2021-09-12 20:17:12.479000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z SUSPENDED Djokovic v Medvedev Match Odds 0 False True 2 4029712768
11 2021-09-12 20:17:13.160000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
12 2021-09-12 21:56:08.717000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
13 2021-09-12 21:57:00.519000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
14 2021-09-12 21:57:07.713000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
15 2021-09-12 21:57:12.713000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
16 2021-09-12 21:57:50.645000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
17 2021-09-12 21:58:01.693000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
18 2021-09-12 21:58:53.670000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
19 2021-09-12 21:58:54.651000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
20 2021-09-12 21:58:58.660000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
21 2021-09-12 21:59:21.643000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
22 2021-09-12 21:59:31.687000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
23 2021-09-12 22:00:39.674000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
24 2021-09-12 22:00:40.548000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
25 2021-09-12 22:00:47.590000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
26 2021-09-12 22:01:09.689000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
27 2021-09-12 22:01:44.644000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
28 2021-09-12 22:01:47.638000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
29 2021-09-12 22:01:57.697000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
30 2021-09-12 22:01:58.673000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
31 2021-09-12 22:02:02.592000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
32 2021-09-12 22:03:21.581000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
33 2021-09-12 22:03:28.483000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
34 2021-09-12 22:03:51.712000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
35 2021-09-12 22:05:00.717000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
36 2021-09-12 22:05:16.714000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
37 2021-09-12 22:07:11.468000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
38 2021-09-12 22:07:13.689000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
39 2021-09-12 22:14:31.644000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
40 2021-09-12 22:14:43.636000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
41 2021-09-12 22:14:48.656000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
42 2021-09-12 22:16:17.685000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
43 2021-09-12 22:16:35.670000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
44 2021-09-12 22:18:53.379000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
45 2021-09-12 22:19:01.566000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
46 2021-09-12 22:21:20.580000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
47 2021-09-12 22:22:31.688000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
48 2021-09-12 22:22:38.386000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
49 2021-09-12 22:22:58.533000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
50 2021-09-12 22:23:26.524000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
51 2021-09-12 22:23:43.668000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
52 2021-09-12 22:23:49.660000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
53 2021-09-12 22:24:04.643000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
54 2021-09-12 22:24:22.704000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
55 2021-09-12 22:24:30.608000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
56 2021-09-12 22:25:15.490000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
57 2021-09-12 22:27:33.716000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
58 2021-09-12 22:28:45.654000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
59 2021-09-12 22:29:03.661000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
60 2021-09-12 22:29:54.623000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
61 2021-09-12 22:30:19.544000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
62 2021-09-12 22:30:57.704000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
63 2021-09-12 22:31:47.665000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
64 2021-09-12 22:31:48.588000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
65 2021-09-12 22:31:50.658000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
66 2021-09-12 22:32:02.706000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
67 2021-09-12 22:32:59.558000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
68 2021-09-12 22:33:15.675000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
69 2021-09-12 22:33:26.482000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z SUSPENDED Djokovic v Medvedev Match Odds 3 True True 2 4029883744
70 2021-09-12 22:36:23.103000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z CLOSED Djokovic v Medvedev Match Odds 3 True True 0 4029887210

For market update we should remove the identical update lines (line with no changes except "publish_time" and "version" value), and remove version value

this is my code to that (to imporve and fix=

# remove similar line 
newUpdate = []
newUpdate.append(self.marketUpdates[0])
for index, elem in enumerate(self.marketUpdates):
    if(index>0):
        if(not(self.marketUpdates[index-1]['openDate'] == elem['openDate'] and
            self.marketUpdates[index-1]['status'] == elem['status'] and
            self.marketUpdates[index-1]['betDelay'] == elem['betDelay'] and
            self.marketUpdates[index-1]['inPlay'] == elem['inPlay'])):
                newUpdate.append(elem)

self.marketUpdates = newUpdate

So for this file we should have this

mainObj['market"] // removed identical lines

publish_time id eventId marketType openDate status eventName name betDelay inPlay complete numberOfActiveRunners
0 2021-09-11 03:27:17.213000 1.18753 30891863 MATCH_ODDS 2021-09-12T15:00:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2
3 2021-09-11 04:33:44.468000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z OPEN Djokovic @ Medvedev Match Odds 0 False True 2
4 2021-09-11 05:58:50.202000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z SUSPENDED Djokovic v Medvedev Match Odds 0 False True 2
5 2021-09-11 05:58:59.435000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2
7 2021-09-12 20:01:55.685000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:15:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2
9 2021-09-12 20:12:01.419000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2
10 2021-09-12 20:17:12.479000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z SUSPENDED Djokovic v Medvedev Match Odds 0 False True 2
11 2021-09-12 20:17:13.160000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2
69 2021-09-12 22:33:26.482000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z SUSPENDED Djokovic v Medvedev Match Odds 3 True True 2
70 2021-09-12 22:36:23.103000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z CLOSED Djokovic v Medvedev Match Odds 3 True True 0

mainObj['runners"]

status id name sortPriority
1 LOSER 2249229 Novak Djokovic 1
2 WINNER 19924831 Daniil Medvedev 2

mainObj['odds"] // some lines are removed here to view

publish_time runner_id runner_name odds tv trd batb batl sortPriority
9818 2021-09-12 22:19:35.713000 19924831 Daniil Medvedev 1.01 6.68472e+06 [[1.01, 9.17]] [[0, 1.01, 142355.73]] [[0, 1.02, 56460.02]] 2
9828 2021-09-12 22:19:47.555000 19924831 Daniil Medvedev 1.01 6.69197e+06 [[1.01, 2423.62]] [[0, 1.01, 141183.56]] nan 2
10029 2021-09-12 22:23:26.524000 19924831 Daniil Medvedev 1.01 6.86352e+06 [[1.01, 60000.53], [1.02, 470821.02]] [[0, 1.01, 32819.33], [1, 1.01, 0]] nan 2
10030 2021-09-12 22:23:27.658000 19924831 Daniil Medvedev 1.01 6.86352e+06 nan [[0, 1.02, 156.73], [1, 1.01, 41358.3]] [[1, 1.04, 19773.08]] 2
10031 2021-09-12 22:23:28.644000 19924831 Daniil Medvedev 1.01 6.86352e+06 nan [[1, 1.01, 49896.43]] [[0, 1.03, 26970.37]] 2
10032 2021-09-12 22:23:29.520000 19924831 Daniil Medvedev 1.01 6.86352e+06 nan nan [[0, 1.03, 27213.09], [1, 1.04, 14758.89]] 2
10035 2021-09-12 22:23:32.670000 19924831 Daniil Medvedev 1.01 6.86423e+06 [[1.01, 60000.77], [1.02, 471523.44]] [[0, 1.01, 45859.5]] [[0, 1.02, 51.46]] 2
10036 2021-09-12 22:23:33.654000 19924831 Daniil Medvedev 1.01 6.86423e+06 nan nan [[0, 1.02, 416.39]] 2
10037 2021-09-12 22:23:34.168000 19924831 Daniil Medvedev 1.01 6.86423e+06 nan [[0, 1.01, 45869.5]] nan 2
10623 2021-09-12 22:33:25.556000 19924831 Daniil Medvedev 1.01 7.5221e+06 [[1.01, 61163.32]] nan [[0, 1.01, 23918.93], [1, 1.02, 4011.13], [2, 1.04, 46.22]] 2
10624 2021-09-12 22:33:28.655000 19924831 Daniil Medvedev 1.01 7.5221e+06 nan nan [[2, 1.04, 41.1]] 2
10625 2021-09-12 22:33:30.956000 19924831 Daniil Medvedev 1.01 7.5221e+06 nan nan [[2, 1.04, 3.81]] 2
10626 2021-09-12 22:33:42.587000 19924831 Daniil Medvedev 1.01 7.5221e+06 nan nan [[0, 1.02, 4011.13], [1, 1.04, 3.81], [2, 1.05, 3585.56]] 2
10627 2021-09-12 22:33:44.085000 19924831 Daniil Medvedev 1.01 7.5221e+06 nan nan [[1, 1.05, 3585.56], [2, 1.06, 4753.31]] 2
10628 2021-09-12 22:33:56.976000 19924831 Daniil Medvedev 1.01 7.5221e+06 nan nan [[0, 1.15, 50.42], [1, 1.2, 79], [2, 1.3, 43.7]] 2
10629 2021-09-12 22:34:13.765000 19924831 Daniil Medvedev 1.01 7.5221e+06 nan nan [[0, 1.2, 59.42], [1, 1.3, 23.7], [2, 1.47, 20.07]] 2
22124 2021-09-12 22:22:23.628000 2249229 Novak Djokovic 100 4.28571e+06 [[100, 10]] [[0, 100, 7.8], [1, 80, 42.69], [2, 60, 8.54]] [[0, 120, 2.05], [1, 200, 1.5], [2, 230, 2]] 1
22125 2021-09-12 22:22:24.668000 2249229 Novak Djokovic 100 4.28571e+06 nan [[2, 65, 144]] [[1, 150, 2], [2, 200, 1.5]] 1
22126 2021-09-12 22:22:25.651000 2249229 Novak Djokovic 100 4.28571e+06 nan [[1, 80, 61.48]] nan 1
22127 2021-09-12 22:22:26.680000 2249229 Novak Djokovic 100 4.28571e+06 nan [[0, 100, 3], [2, 70, 8.54]] nan 1
22128 2021-09-12 22:22:27.665000 2249229 Novak Djokovic 95 4.28571e+06 [[95, 4]] [[0, 95, 5.23], [1, 85, 79.89], [2, 80, 61.48]] nan 1
22129 2021-09-12 22:22:28.645000 2249229 Novak Djokovic 95 4.28571e+06 nan [[0, 85, 89.89], [1, 80, 61.48], [2, 70, 8.54]] [[2, 180, 2]] 1
22130 2021-09-12 22:22:29.681000 2249229 Novak Djokovic 95 4.28571e+06 nan [[0, 85, 64.27], [1, 80, 42.69], [2, 65, 144]] nan 1
22163 2021-09-12 22:23:18.040000 2249229 Novak Djokovic 85 4.28596e+06 [[85, 94.46], [90, 27.94]] [[0, 85, 11.57], [1, 60, 53.16], [2, 55, 13.23]] nan 1
22164 2021-09-12 22:23:19.224000 2249229 Novak Djokovic 85 4.28596e+06 nan [[0, 60, 53.16], [1, 55, 13.23], [2, 50, 1.71]] nan 1
22165 2021-09-12 22:23:20.514000 2249229 Novak Djokovic 100 4.28596e+06 [[100, 113.3]] nan [[0, 100, 7.73]] 1
22166 2021-09-12 22:23:22.633000 2249229 Novak Djokovic 100 4.28596e+06 nan nan [[0, 85, 7.23], [1, 100, 7.73], [2, 200, 1.5]] 1
22167 2021-09-12 22:23:23.617000 2249229 Novak Djokovic 100 4.28596e+06 nan [[0, 55, 13.23], [1, 50, 1.71], [2, 48, 1.71]] [[2, 110, 10.63]] 1

Panda dataframe to python object

Now we have completed conversion from original raw file to panda dataframe

It's the moment to start to convert in python object

We pass this obj to convertToMyObject(dataframe, path, status) function tha is in code/dfToObeject.py

in this file i separate MarketInfo, MarketSelection, MarketUpdates, MarketPrices entities and i covert panda df to python obj

The class is defined in code/object/markets.py The constructor take the dataframe and create a python object based on last market update

I take into consideration the last market changes update for makert info and runners to be sure to get the complete and correct info (based on the fact that they are the info on which will be based the settlement of the market and then its closing)

Match updates fix (correct openDate)

Now we start with match update fix

In practice there is an "error" on the data reported by betfair. The starting time reported in the market update (openDate) is almost never correct to the thousandth because that value (openDate) is set according to the official time of, but then the match starts at a different time (sometimes we talk about a few seconds or minutes, while in other cases the deviation can be much larger.

To correct this error

    # fix start match error
    mainMarket.fixUpdates()
publish_time id eventId marketType openDate status eventName name betDelay inPlay complete numberOfActiveRunners version
0 2021-09-11 03:27:17.213000 1.18753 30891863 MATCH_ODDS 2021-09-12T15:00:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4023427524
3 2021-09-11 04:33:44.468000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z OPEN Djokovic @ Medvedev Match Odds 0 False True 2 4023449846
4 2021-09-11 05:58:50.202000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z SUSPENDED Djokovic v Medvedev Match Odds 0 False True 2 4023467671
5 2021-09-11 05:58:59.435000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:00:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4023468035
7 2021-09-12 20:01:55.685000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:15:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4029685094
9 2021-09-12 20:12:01.419000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 0 False True 2 4029701160
10 2021-09-12 20:17:12.479000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z SUSPENDED Djokovic v Medvedev Match Odds 0 False True 2 4029712768
11 2021-09-12 20:17:13.160000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z OPEN Djokovic v Medvedev Match Odds 3 True True 2 4029713448
69 2021-09-12 22:33:26.482000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z SUSPENDED Djokovic v Medvedev Match Odds 3 True True 2 4029883744
70 2021-09-12 22:36:23.103000 1.18753 30891863 MATCH_ODDS 2021-09-12T20:08:00.000Z CLOSED Djokovic v Medvedev Match Odds 3 True True 0 4029887210

like here as you can see betfair report for openDate = 2021-09-12T20:08:00.000Z, but the correct in play time is 2021-09-12 20:17:13.160000, and we can find it iterating over the marketUpdate array and stopping the search when these conditions are all true:

  • status = 'OPEN'
  • inPlay = True
  • betDelay > 0

something like this

inPlayTime = 0
#find open time for market Update
for elem in self.marketUpdates:
    if elem['inPlay'] and elem['status'] == 'OPEN' and elem['betDelay'] >0 :
        inPlayTime = int(elem['timestamp'])
        break

Removing some market

Now we can save the info about correct openDate and the betDelay time

There are some rule to remove / skip the market if betDelay are to high

  • Tennis --> remove if (betdelay >3 and open date > 2019)
  • Tennis --> remove if (betdelay >5 and open date < 2019)
  • Football --> remove if betdelay > 7

And ONLY FOR TENNIS, we should remove match with "/" in event name (all doubles matches, that i don't want in my DB)

  • Tennis --> remove if eventName contains "/" or " / "

WE HAVE TO REMOVE ALL THE MARKET NEVER TURNED IN PLAY OR THAT STAY INPLAY LESS THAN 1 MINUTE (FOR FOOTBALL AND TENNIS)

Improve runner info and odds information

Now the object is complete, it's the time to improve runners metadata based on odd information.

    # update updates with odds for the status
    mainMarket.updateRunnersStats(status)

With this code we save this info about the runners

  • runners['inPlayOdds']: the first odds (ltp values) after the market is inPlay (first runners odds after openDate time)
  • runners['inPlayIndex']: the first odds (ltp values) after the market is inPlay (the index in odds array)
  • runners['inPlayTime']: the first odds timestamp (ltp values) after the market is inPlay (the first timestamp for this runner after openDate )
  • runners['closedOdds']: the last odds (ltp values) for the runner
  • runners['avgPrematch']: the average odds before openDate
  • runners['maxPrematch']: the max odds reached (ltp values) by the runner before the openDate time
  • runners['minPrematch']: the min odds reached (ltp values) by the runner before the openDate time
  • runners['maxInPlay']: the max odds reached (ltp values) by the runner after the openDate time
  • runners['minInPlay']: the min odds reached (ltp values) by the runner after the openDate time
  • runners['lengthOdds']: the total lenght of the odds array
  • runners['lengthOddsPrematch']: the total lenght of the odds before the openDate
  • runners['lengthOddsInPlay']: the total lenght of the odds from the openDate to the market CLOSE

Volume info for ADVANCED

if status == 'ADVANCED':

  • runners['tradedVolume']: the total traded volume on this runner (should be the last chronological "tv" volume)
  • runners['preMatchVolume']: the total traded volume on this runner before the open date
  • runners['inPlayVolume']: the total traded volume on this runner from the open date to the end CLOSE of the market
 # update odds for status in updates
def updateRunnersStats(self, status):
    inPlay = self.info['openDate']
    runners = self.runners
    odds = self.odds

    # find inplay for all runners
    for run in runners:

        sumPrematch = 0
        stepCounter = 0
        contPrematch = 0
        maxPrematch = -100
        minPrematch = 1001
        maxInPlay = -100
        minInPlay = 1001
        found = False

        # volume for runner
        preMatchVolume = 0

        # iterate over odds
        for odd in odds:
            if odd['runnerId'] == run['id']:
                # find inPlay index
                inPlayindex = int(self.findInPlayIndex(odd, inPlay))
                if len(odd['odds']) > 0 and inPlayindex > -1:
                    for _odd in odd['odds']:
                        # avg runner prematch odd
                        if stepCounter < inPlayindex:
                            # check if max prematch
                            if _odd['ltp'] > maxPrematch:
                                maxPrematch = _odd['ltp']
                            # check if min prematch
                            if _odd['ltp'] < minPrematch:
                                minPrematch = _odd['ltp']
                            # increment prematch counter
                            sumPrematch = sumPrematch + _odd['ltp']
                            contPrematch = contPrematch + 1

                        elif stepCounter >= inPlayindex:
                            # im in INPLAY
                            # set the first inplay ltp as inPlayOdds
                            if not found:
                                # volume for ADVANCED only (check volume)
                                if status == 'ADVANCED':
                                    preMatchVolume = _odd['tv']
                                # inPlay time and odds
                                run['inPlayOdds'] = _odd['ltp']
                                run['inPlayTime'] = _odd['timestamp']
                                found = True
                            # check if max inplay
                            if _odd['ltp'] > maxInPlay:
                                maxInPlay = _odd['ltp']
                            # check if min inplay
                            if _odd['ltp'] < minInPlay:
                                minInPlay = _odd['ltp']
                        # increment step counter
                        stepCounter = stepCounter + 1
                    # avg odds prematch 
                    if contPrematch != 0:
                        run['avgPrematch'] = round(sumPrematch / contPrematch, 2)
                    else:
                        run['avgPrematch'] = 0
                    # closed odds
                    run['closedOdds'] = odd['odds'][len(odd['odds']) - 1]['ltp']
                    # max and min prematch
                    run['maxPrematch'] = maxPrematch
                    run['minPrematch'] = minPrematch
                    # max and min inPlay
                    run['maxInPlay'] = maxInPlay
                    run['minInPlay'] = minInPlay
                    # odds metadata
                    run['inPlayIndex'] = inPlayindex
                    run['lengthOdds'] = stepCounter
                    run['lengthOddsPrematch'] = contPrematch
                    run['lengthOddsInPlay'] = stepCounter - contPrematch
                    # volume for ADVANCED
                    if status == 'ADVANCED':
                        run['tradedVolume'] = round(odd['odds'][len(odd['odds']) - 1]['tv'], 2)
                        run['preMatchVolume'] = round(preMatchVolume, 2)
                        run['inPlayVolume'] = round(run['tradedVolume'] - preMatchVolume, 2)
                # no odds for this runner
                else:
                    run['inPlayOdds'] = 0
                    run['openOdds'] = 0
                    run['closedOdds'] = 0
                    run['maxPrematch'] = 0
                    run['minPrematch'] = 0
                    run['maxInPlay'] = 0
                    run['minInPlay'] = 0
                    # volume for ADVANCED
                    if status == 'ADVANCED':
                        run['tradedVolume'] = 0
                        run['preMatchVolume'] = 0
                        run['inPlayVolume'] = 0


# update total market volume based on runner traded volume
def updateVolume(self):
    for runnerVol in self.runners:
        self.info['volume']['total'] = round(self.info['volume']['total'] + runnerVol['tradedVolume'], 2)
        self.info['volume']['preMatch'] = round(self.info['volume']['preMatch'] + runnerVol['preMatchVolume'], 2)
        self.info['volume']['inPlay'] = round(self.info['volume']['inPlay'] + runnerVol['inPlayVolume'], 2)


# find inPlay index for this runner
def _find_inPlay_index(self, runnerOdds, inPlayTime):
    counter = 0
    minCounter = -1
    for value in runnerOdds['odds']:
        if value['timestamp'] - inPlayTime >= 0:
            minCounter = counter
            break
        counter = counter + 1
    return minCounter

After this pass we should save this info in file, with improved runner info that should looks likes: (odds part are ommised)

{
  "info": {
    "id": "1.187528277",
    "eventId": 30891863,
    "eventName": "Match Odds",
    "marketType": "MATCH_ODDS",
    "openDate": 1631477833160,
    "name": "Djokovic v Medvedev",
    "numberOfActiveRunner": 2,
    "numberOfWinners": 1,
    "bspMarket": false,
    "turnInPlayEnabled": true,
    "persistenceEnabled": true,
    "timezone": "Europe/London",
    "countryCode": "US",
    "sport": "TENNIS",
    "venue": "",
    "volume": {
      "total": 11825068.38,
      "preMatch": 1852569.96,
      "inPlay": 9972498.42
    },
    "winner": {
      "id": 19924831,
      "name": "Daniil Medvedev",
      "status": "WINNER",
      "position": 2
    },
    "delay": 3
  },
  "runners": [
    {
      "id": 2249229,
      "name": "Novak Djokovic",
      "status": "LOSER",
      "position": 1,
      "inPlayOdds": 1.44,
      "inPlayTime": 1631477833160,
      "avgPrematch": 1.42,
      "closedOdds": 19.0,
      "maxPrematch": 1.44,
      "minPrematch": 1.38,
      "maxInPlay": 120.0,
      "minInPlay": 1.41,
      "inPlayIndex": 4532,
      "lengthOdds": 12014,
      "lengthOddsPrematch": 4532,
      "lengthOddsInPlay": 7482,
      "tradedVolume": 4302965.3,
      "preMatchVolume": 1578301.23,
      "inPlayVolume": 2724664.07
    },
    {
      "id": 19924831,
      "name": "Daniil Medvedev",
      "status": "WINNER",
      "position": 2,
      "inPlayOdds": 3.3,
      "inPlayTime": 1631477833160,
      "avgPrematch": 3.34,
      "closedOdds": 1.01,
      "maxPrematch": 3.55,
      "minPrematch": 3.25,
      "maxInPlay": 3.45,
      "minInPlay": 1.01,
      "inPlayIndex": 3013,
      "lengthOdds": 10613,
      "lengthOddsPrematch": 3013,
      "lengthOddsInPlay": 7600,
      "tradedVolume": 7522103.08,
      "preMatchVolume": 274268.73,
      "inPlayVolume": 7247834.35
    }
  ],
  "marketUpdates": [
    { 
      "timestamp":  1631330837213000000,
      "openDate":   1631458800000,
      "status": "OPEN",
      "betDelay": 0,
      "inPlay": false,
      "complete": true
    },
    {
      "timestamp": 1631334824468000000,
      "openDate": 1631476800000,
      "status": "OPEN",
      "betDelay": 0,
      "inPlay": false,
      "complete": true
    },
    {
      "timestamp": 1631339930202000000,
      "openDate": 1631476800000,
      "status": "SUSPENDED",
      "betDelay": 0,
      "inPlay": false,
      "complete": true
    },
    {
      "timestamp": 1631339939435000000,
      "openDate": 1631476800000,
      "status": "OPEN",
      "betDelay": 0,
      "inPlay": false,
      "complete": true
    },
    {
      "timestamp": 1631476915685000000,
      "openDate": 1631477700000,
      "status": "OPEN",
      "betDelay": 0,
      "inPlay": false,
      "complete": true
    },
    {
      "timestamp": 1631477521419000000,
      "openDate": 1631477280000,
      "status": "OPEN",
      "betDelay": 0,
      "inPlay": false,
      "complete": true
    },
    {
      "timestamp": 1631477832479000000,
      "openDate": 1631477280000,
      "status": "SUSPENDED",
      "betDelay": 0,
      "inPlay": false,
      "complete": true
    },
    {
      "timestamp": 1631477833160000000,
      "openDate": 1631477280000,
      "status": "OPEN",
      "betDelay": 3,
      "inPlay": true,
      "complete": true
    },
    {
      "timestamp": 1631486006482000000,
      "openDate": 1631477280000,
      "status": "SUSPENDED",
      "betDelay": 3,
      "inPlay": true,
      "complete": true
    },
    {
      "timestamp": 1631486183103000000,
      "openDate": 1631477280000,
      "status": "CLOSED",
      "betDelay": 3,
      "inPlay": true,
      "complete": true
    }
  ],
  "odds":
  ....
}

4- Additional data

As i said now the market info from Betfair is complete, but in order to have a complete DB we have to add some info form this file

Tennis Data

ATP B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AI AJ
ATP Location Tournament Date Series Court Surface Round Best of Winner Loser WRank LRank WPts LPts W1 L1 W2 L2 W3 L3 W4 L4 W5 L5 Wsets Lsets Comment B365W B365L PSW PSL MaxW MaxL AvgW AvgL
1 Antalya Antalya Open 1/7/2021 ATP250 Indoor Hard 1st Round 3 Basilashvili N. Arnaboldi A. 40 267 1395 206 4 6 7 5 6 1 2 1 Completed 1.5 2.5 1.61 2.44 1.67 2.56 1.56 2.42
1 Antalya Antalya Open 1/7/2021 ATP250 Indoor Hard 1st Round 3 Celikbilek A. Zuk K. 309 262 150 209 7 6 7 5 2 0 Completed 2.5 1.5 2.63 1.54 2.7 1.55 2.57 1.5
1 Antalya Antalya Open 1/7/2021 ATP250 Indoor Hard 1st Round 3 Ruusuvuori E. Vesely J. 87 67 806 928 6 3 7 6 2 0 Completed 1.5 2.5 1.56 2.58 1.63 3.03 1.52 2.53
1 Antalya Antalya Open 1/7/2021 ATP250 Indoor Hard 1st Round 3 Bublik A. Caruso S. 49 76 1090 858 6 3 6 3 2 0 Completed 1.61 2.2 1.81 2.09 1.87 2.3 1.72 2.11
1 Antalya Antalya Open 1/7/2021 ATP250 Indoor Hard 1st Round 3 Goffin D. Herbert P.H. 16 83 2555 822 3 6 7 5 6 0 2 1 Completed 1.4 2.75 1.46 2.92 1.5 3 1.44 2.78
1 Antalya Antalya Open 1/7/2021 ATP250 Indoor Hard 1st Round 3 Travaglia S. Kecmanovic M. 75 42 869 1328 1 6 6 4 6 0 2 1 Completed 2.62 1.44 2.8 1.49 2.85 1.5 2.71 1.45
1 Antalya Antalya Open 1/8/2021 ATP250 Indoor Hard 1st Round 3 Struff J.L. Kotov P. 37 269 1450 205 6 4 6 3 2 0 Completed 1.22 4 1.24 4.44 1.27 4.6 1.22 4.16
1 Antalya Antalya Open 1/8/2021 ATP250 Indoor Hard 1st Round 3 Lamasine T. Gerasimov E. 271 78 204 840 7 6 6 2 2 0 Completed 5 1.16 5.74 1.17 5.74 1.22 5.12 1.16

NB: If the match is found in ATP.xlsx under 2021 folder so we place the value:

   "federation": "ATP", 
   "sex": "MALE",
   "season": 2021

If found in WTA excel under 2020 folder so:

   "federation": "WTA", 
   "sex": "FEMALE",
   "season": 2020

Soccer Data

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV AW AX AY AZ BA BB BC BD BE BF BG BH BI BJ BK BL BM BN BO BP BQ BR BS BT BU BV BW BX BY BZ CA CB CC CD CE CF CG CH CI CJ CK CL CM CN CO CP CQ CR CS CT CU CV CW CX CY CZ DA
Div Date Time HomeTeam AwayTeam FTHG FTAG FTR HTHG HTAG HTR HS AS HST AST HF AF HC AC HY AY HR AR B365H B365D B365A BWH BWD BWA IWH IWD IWA PSH PSD PSA WHH WHD WHA VCH VCD VCA MaxH MaxD MaxA AvgH AvgD AvgA B365>2.5 B365<2.5 P>2.5 P<2.5 Max>2.5 Max<2.5 Avg>2.5 Avg<2.5 AHh B365AHH B365AHA PAHH PAHA MaxAHH MaxAHA AvgAHH AvgAHA B365CH B365CD B365CA BWCH BWCD BWCA IWCH IWCD IWCA PSCH PSCD PSCA WHCH WHCD WHCA VCCH VCCD VCCA MaxCH MaxCD MaxCA AvgCH AvgCD AvgCA B365C>2.5 B365C<2.5 PC>2.5 PC<2.5 MaxC>2.5 MaxC<2.5 AvgC>2.5 AvgC<2.5 AHCh B365CAHH B365CAHA PCAHH PCAHA MaxCAHH MaxCAHA AvgCAHH AvgCAHA
I1 21/08/2021 17:30 Inter Genoa 4 0 H 2 0 H 17 11 8 5 18 7 8 2 1 2 0 0 1.33 5.25 9 1.33 5.5 8.5 1.37 5.25 8 1.36 5.37 9.65 1.35 5 9 1.3 5 10 1.4 5.5 10 1.35 5.16 8.94 1.66 2.2 1.67 2.33 1.71 2.38 1.63 2.28 -1.25 1.75 2.05 1.81 2.11 1.87 2.13 1.8 2.07 1.28 5.75 11 1.3 5.25 10.5 1.3 5.25 11 1.31 5.78 11.37 1.29 5.5 11 1.25 5.75 11.5 1.35 6.25 12.75 1.29 5.58 10.84 1.61 2.3 1.61 2.45 1.7 2.55 1.62 2.32 -1.5 1.88 2.05 1.89 2.03 1.96 2.09 1.86 2.01
I1 21/08/2021 17:30 Verona Sassuolo 2 3 A 0 1 A 12 15 4 8 11 12 7 4 3 2 1 0 2.62 3.3 2.62 2.55 3.5 2.7 2.6 3.45 2.7 2.66 3.55 2.75 2.6 3.4 2.7 2.63 3.25 2.7 2.74 3.55 2.79 2.61 3.43 2.69 1.9 2.03 1.87 2.04 1.9 2.06 1.85 1.98 0 1.93 2 1.93 1.99 1.95 2.01 1.91 1.97 2.5 3.4 2.75 2.55 3.5 2.7 2.55 3.35 2.75 2.64 3.43 2.84 2.5 3.4 2.8 2.55 3.25 2.8 2.75 3.5 2.9 2.57 3.4 2.76 1.8 2 1.81 2.1 1.87 2.17 1.8 2.03 0 1.88 2.05 1.89 2.04 2 2.07 1.86 2.02
I1 21/08/2021 19:45 Empoli Lazio 1 3 A 1 3 A 16 8 5 5 13 10 5 3 2 1 0 0 4.6 4 1.7 4.6 3.9 1.75 4.6 3.95 1.7 5.01 4.02 1.74 4.75 3.7 1.75 5 3.7 1.7 5.01 4.03 1.79 4.71 3.9 1.73 1.72 2.1 1.75 2.19 1.78 2.21 1.72 2.15 0.75 1.98 1.95 1.97 1.94 2 2 1.93 1.93 3.75 3.8 1.9 4 3.75 1.87 3.65 3.75 1.95 4.11 3.84 1.93 4 3.7 1.88 4 3.6 1.9 4.5 3.94 2 4.06 3.77 1.88 1.66 2.2 1.69 2.29 1.74 2.39 1.68 2.21 0.5 2 1.93 2 1.93 2.06 1.95 1.99 1.88
I1 21/08/2021 19:45 Torino Atalanta 1 2 A 0 1 A 19 6 8 2 17 13 5 1 2 2 0 0 5.5 4.33 1.55 5 4.25 1.62 5.25 4.3 1.6 5.5 4.25 1.65 5.5 4.2 1.6 5.75 4.2 1.55 5.75 4.48 1.65 5.43 4.23 1.6 1.57 2.37 1.61 2.46 1.61 2.52 1.57 2.43 1 1.89 2.04 1.88 2.06 1.92 2.07 1.87 2 6 4.5 1.5 6.25 4.5 1.5 6 4.5 1.53 6.51 4.5 1.54 6.5 4.2 1.53 6.5 4.33 1.5 6.9 4.75 1.59 6.16 4.48 1.52 1.53 2.5 1.55 2.6 1.63 2.72 1.56 2.45 1 2.06 1.87 2.08 1.85 2.19 1.9 2.03 1.84
I1 22/08/2021 17:30 Bologna Salernitana 3 2 H 0 0 D 18 8 7 4 13 15 9 4 6 3 2 1 1.65 4 5 1.67 4 5 1.63 4.1 5.25 1.65 4.29 5.42 1.63 4 5.25 1.62 3.75 5.75 1.7 4.29 5.75 1.65 4.04 5.15 1.8 2 1.8 2.11 1.87 2.11 1.81 2.02 -0.75 1.85 2.08 1.84 2.1 1.88 2.1 1.83 2.05 1.5 4.5 6 1.53 4.4 6 1.55 4.3 5.75 1.55 4.52 6.38 1.52 4.33 6.5 1.5 4.2 7 1.59 4.61 7 1.54 4.37 6.05 1.72 2.1 1.72 2.24 1.76 2.37 1.7 2.16 -1 1.94 1.99 1.92 2.01 2.02 2.01 1.91 1.95
I1 22/08/2021 17:30 Udinese Juventus 2 2 D 0 2 A 11 11 6 4 11 12 3 3 1 3 0 0 7.5 4.33 1.45 7.5 4.5 1.44 7.5 4.4 1.45 7.59 4.48 1.49 7.5 4.2 1.47 8 4.33 1.4 8 4.5 1.53 7.21 4.35 1.47 1.72 2.1 1.79 2.13 1.82 2.15 1.77 2.08 1 2.05 1.75 2.15 1.79 2.15 1.86 2.08 1.79 7 4 1.5 5.75 4.2 1.57 6.75 4.1 1.53 7.45 4.03 1.56 7 4.2 1.5 7.5 3.9 1.5 8.08 4.25 1.59 6.89 4.03 1.53 2.09 1.84 2.08 1.83 2.13 1.95 1.98 1.85 1 1.91 1.99 1.93 1.99 2.01 2 1.93 1.93
I1 22/08/2021 19:45 Napoli Venezia 2 0 H 0 0 D 13 8 4 4 5 22 2 2 1 7 1 0 1.22 6.5 12 1.25 6.25 11 1.25 6.5 11 1.25 6.67 12.08 1.24 6 13 1.2 6.5 13 1.28 6.8 13 1.24 6.38 11.79 1.44 2.75 1.44 2.91 1.48 2.95 1.44 2.78 -1.75 1.89 2.04 1.87 2.05 1.9 2.05 1.86 2.02 1.2 6.5 13 1.22 6.75 12 1.22 6.75 12 1.22 7.1 13.81 1.2 6.5 15 1.18 6.5 17 1.25 7.25 17 1.22 6.74 12.94 1.4 3 1.43 2.98 1.46 3 1.42 2.87 -2 2.04 1.89 2.03 1.88 2.15 1.99 2.03 1.84
I1 22/08/2021 19:45 Roma Fiorentina 3 1 H 1 0 H 11 11 6 8 12 14 4 4 3 2 1 1 1.72 3.8 4.75 1.72 4 4.6 1.75 3.95 4.3 1.81 3.96 4.59 1.75 3.8 4.6 1.73 3.7 4.75 1.82 4.03 4.75 1.77 3.85 4.5 1.66 2.2 1.72 2.23 1.76 2.25 1.68 2.2 -0.75 2.02 1.91 2.02 1.9 2.02 1.93 1.99 1.88 1.6 4.2 5.25 1.6 4.33 5.25 1.63 4.2 4.9 1.67 4.2 5.31 1.61 4 5.5 1.6 4 5.5 1.71 4.4 5.6 1.65 4.16 5.11 1.61 2.3 1.61 2.44 1.68 2.55 1.61 2.33 -0.75 1.85 2.08 1.85 2.08 1.86 2.16 1.82 2.06

TABLE FOR LEAGUE

In addition for soccer we should set the division value based on column A in the found match line

ex: Inter v Juvents -> find in file called I1 under folder 2021-> we put this value in addition football info

  "league": "Serie A",
  "countryCode": "ITA",
  "season": "2020/2021",

Based on this code list

# code ( columns a in excel, named DIV) leagueName countryCode
1 E0 Premier League GBR
2 E1 Championship GBR
3 SC0 Premier League SCOT
4 SC1 Division 1 SCOT
5 D1 Budesliga 1 GER
6 D2 Budesliga 2 GER
7 I1 Serie A ITA
8 I2 Serie B ITA
9 SP1 La Liga Primera Division ESP
10 SP2 La Liga Segunda Division ESP
11 F1 Ligue 1 FRA
12 F2 Ligue 2 FRA
13 N1 Eredivise NLD
14 B1 Jupiler League BEL
15 P1 Liga I PRT
16 T1 Futbol Ligi 1 TUR
17 G1 Ethniki Katigoria GRE

HORSE:

no additional info to add

The task should check in the excel or csv file if the market is present (it's possible that not exist in excel DB) If not presnt in db set

 "additionalInfo":{
  "tennis": null,
  "soccer": null,
  "horse": null,
 }                                 

looking by marketName, runner name and date we should find the market in the .csv / .excel

After found the correct line in excel/csv we should add this data in the market info.

NB: I didn't make this part in my code, you have to start from 0. I can suggest you to search in excel the name of the runners in the columns together with the date (a market with 2 same runners and particular date is always unique) and then copy the data.

At end of this proces the complete file should look like this ( marketUpdates ans odds part are ommised)

{
  "info": {
    "id": "1.187528277",
    "eventId": 30891863,
    "eventName": "Match Odds",
    "marketType": "MATCH_ODDS",
    "openDate": 1631477833160,
    "name": "Djokovic v Medvedev",
    "numberOfActiveRunner": 2,
    "countryCode": "US",
    "sport": "TENNIS",
    "venue": "",
    "volume": {
      "total": 11825068.38,
      "preMatch": 1852569.96,
      "inPlay": 9972498.42
    },
    "winner": {
      "id": 19924831,
      "name": "Daniil Medvedev",
      "status": "WINNER",
      "position": 2
    },
    "delay": 3
  },
  "runners": [
    {
      "id": 2249229,
      "name": "Novak Djokovic",
      "status": "LOSER",
      "position": 1,
      "inPlayOdds": 1.44,
      "inPlayTime": 1631477833160,
      "avgPrematch": 1.42,
      "closedOdds": 19.0,
      "maxPrematch": 1.44,
      "minPrematch": 1.38,
      "maxInPlay": 120.0,
      "minInPlay": 1.41,
      "inPlayIndex": 4532,
      "lengthOdds": 12014,
      "lengthOddsPrematch": 4532,
      "lengthOddsInPlay": 7482,
      "tradedVolume": 4302965.3,
      "preMatchVolume": 1578301.23,
      "inPlayVolume": 2724664.07
    },
    {
      "id": 19924831,
      "name": "Daniil Medvedev",
      "status": "WINNER",
      "position": 2,
      "inPlayOdds": 3.3,
      "inPlayTime": 1631477833160,
      "avgPrematch": 3.34,
      "closedOdds": 1.01,
      "maxPrematch": 3.55,
      "minPrematch": 3.25,
      "maxInPlay": 3.45,
      "minInPlay": 1.01,
      "inPlayIndex": 3013,
      "lengthOdds": 10613,
      "lengthOddsPrematch": 3013,
      "lengthOddsInPlay": 7600,
      "tradedVolume": 7522103.08,
      "preMatchVolume": 274268.73,
      "inPlayVolume": 7247834.35
    }
  ],
  "marketUpdates": [
    {
      "timestamp": 1631330837213000000,
      "openDate": "2021-09-12T15:00:00.000Z",
      "status": "OPEN",
      "betDelay": 0,
      "inPlay": false,
      "complete": true
    },
    ....

  ],
  "additionalInfo":{                                            // data added via excel
      "tennis":{                                                // only for TENNIS, otherwise null
            "tennisTournament":{
                "location":  "New York",                // columns B
                "tournament":  "US Open",               // columns C
                "series":  "Grand Slam",                // columns E
                "court": "Outdoor",                     // columns F
                "surface":  "Hard",                     // columns G
                "round":   "The Final",                 // columns H
                "bestOf":  5                           // columns I
            },
            "tennisRank": {
                "winnerRank": 2,                       // columns L
                "winnerPoint": 9980,                    // columns N
                "loserRank":  1,                       // columns M
                "loserPoint": 11113                    // columns O
            },
            "finalResult":{
                "winner": {
                    "s1": 6,                           // columns P
                    "s2": 6,                           // columns R
                    "s3": 6,                           // columns T
                    "s4": null,                        // columns V
                    "s5": null,                        // columns X
                    "totalSet": 3                      // columns Z
                },
                "loser": {
                    "s1": 4,                           // columns Q
                    "s2": 4,                           // columns S
                    "s3": 4,                           // columns U
                    "s4": null,                        // columns W
                    "s5": null,                        // columns Y
                    "totalSet": 0                       // columns AA
                },
                "comment": "Completed"                   // columns AB
            },
             "bookOdds": {
                "bet365":{
                    "winner": 1.4,                         // columns AC
                    "loser": 3,                            // columns AD
                },
                "pinnacle":{
                    "winner": 1.42,                        // columns AE
                    "loser": 3.14,                         // columns AF
                },
                "maxOddsPortal": {
                    "winner": 1.45,                        // columns AG
                    "loser": 3.36,                         // columns AH
                },
                "avgOddsPortal": {
                    "winner": 1.39,                        // columns AI
                    "loser": 4,                            // columns AJ
                }
            }
      },
      "football":{                                     // only for SOCCER, otherwise null. This data is based on Inter v Genoa -21/08/2021
            "league": "Serie A",                      // added previously based on wher path and file found the market
            "countryCode": "ITA",                      // added previously based on wher path and file found the market
            "season": "2020/2021",                       // added previously based on wher path and file found the market                  
            "finalResult":{
                "home": {
                    "fthg": 4,                         // Full Time Home Team Goals -  columns F
                    "hthg": 2,                         // Half Time Home Team Goals -  columns I
                },
                "away": {
                    "ftag": 0,                         // Full Time Away Team Goals -  columns G
                    "htag": 0,                         // Half Time Away Team Goals -  columns J
                },
                "ftr": "H",                              // Full Time Result (H=Home Win, D=Draw, A=Away Win) - columns H
                "htr": "H"                               // Half Time Result (H=Home Win, D=Draw, A=Away Win) - columns K
            },
            "matchStats": {
                "hs": 17,                               // Home Team Shots - columns L
                "as": 11,                               // Away Team Shots - columns M
                "hst": 8,                               // Home Team Shots on Target - columns N
                "ast": 5,                               // Away Team Shots on Target - columns O
                "hhw": null,                            // Home Team Hit Woodwork - columns --
                "ahw": null,                            // Away Team Hit Woodwork - columns --
                "hc": 8,                                // Home Team Corners - columns R
                "ac": 2,                                // Away Team Corners - columns S
                "hf": 18,                               // Home Team Fouls Committed - columns P
                "af": 7,                                // Away Team Fouls Committed - columns Q
                "hfkc": null,                           // Home Team Free Kicks Conceded - columns --
                "afkc": null,                           // Away Team Free Kicks Conceded - columns --
                "ho": null,                             // Home Team Offsides - columns --
                "ao": null,                             // Away Team Offsides - columns --
                "hy": 1,                                // Home Team Yellow Cards - columns T
                "ay": 3,                                // Away Team Yellow Cards - columns U
                "hr": 0,                                // Home Team Red Cards - columns V
                "ar": 0,                                // Away Team Red Cards - columns W
            },
             "bookOdds": {
                "bet365":{
                    "matchOdds": {
                        "home": 1.33,                         // B365H - columns X
                        "draw": 5.25,                         // B365D - columns Y
                        "away": 9,                           //  B365A - columns Z
                    },
                    "uo25": {
                        "under25": 2.2,                       //B365<2.5 -  columns AW
                        "over25": 1.66,                       //B365>2.5 - columns AV
                    }
                },
                "pinnacle":{
                    "matchOdds": {
                        "home": 1.36,                         // PSH - columns AG
                        "draw": 5.37,                         // PSD - columns AH
                        "away": 9.65,                         // PSA - columns AHI
                    },
                    "uo25": {
                        "under25": 2.33,                       // P<2.5 - columns AX
                        "over25": 1.67,                        // P>2.5 - columns AY
                    }
                }
            }
      },
  },
}

5- check and save JSON

Now we should check that the json file is correct and consistent and not miss any part.

Now that the markert JSON is complete we can save that in code/exportOutput/markets (for the moment it save all togheter but we can mantain the original path, so divided by sport and types)

  • code/exportOutput/markets/BASIC/SOCCER
  • code/exportOutput/markets/BASIC/TENNIS
  • code/exportOutput/markets/BASIC/HORSE RACING

  • code/exportOutput/markets/ADVANCED/SOCCER
  • code/exportOutput/markets/ADVANCED/TENNIS
  • code/exportOutput/markets/ADVANCED/HORSE RACING

6- check and generate RunnerDB

We should start to generate the runnersDB JSON, saving all runners present in the market already saved.

In order to do that we have to save form markets info in runners props

  • id: id of the runner
  • name: name of the runner
    # ##
    #  --- RUNNERS DB CREATOR ---
    # ##
    print('\n\n------ 4 -GENEREATE RUNNERS INFO------')
    runnersDB = RunnersDB()
    for marketList in marketList:
        runnersDB.saveRunnersOfMarket(marketList)

NB: don't add duplicate runner or runners id that already present in the list

Example:

[{"id": 35900675, "name": "Youllovemewheniwin"}, 
{"id": 36764551, "name": "Kaths Toyboy"}, 
{"id": 750247, "name": "Strike"}, 
{"id": 28602170, "name": "Hyde Park Barracks"}, 
{"id": 39258079, "name": "Mr Professor"},
....
]

We should save the JSON list with this filename code/exportOutput/runner/runnerDB_CURRENTDATE


Fell free to write me if you have some problems to understand this documentation or the code

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages