Skip to content

fork with support for FHMQV and further platforms

License

Notifications You must be signed in to change notification settings

kkrentz/micro-ecc

 
 

Repository files navigation

micro-ecc

A small and fast ECDH and ECDSA implementation for 8-bit, 32-bit, and 64-bit processors.

The static version of micro-ecc (ie, where the curve was selected at compile-time) can be found in the "static" branch.

Features

  • Resistant to known side-channel attacks.
  • Written in C, with optional GCC inline assembly for AVR, ARM and Thumb platforms.
  • Supports 8, 32, and 64-bit architectures.
  • Small code size.
  • No dynamic memory allocation.
  • Support for 5 standard curves: secp160r1, secp192r1, secp224r1, secp256r1, and secp256k1.
  • BSD 2-clause license.

Usage Notes

Point Representation

Compressed points are represented in the standard format as defined in http://www.secg.org/sec1-v2.pdf; uncompressed points are represented in standard format, but without the 0x04 prefix. All functions except uECC_decompress() only accept uncompressed points; use uECC_compress() and uECC_decompress() to convert between compressed and uncompressed point representations.

Private keys are represented in the standard format.

Using the Code

I recommend just copying (or symlink) the uECC files into your project. Then just #include "uECC.h" to use the micro-ecc functions.

For use with Arduino, you can use the Library Manager to download micro-ecc (Sketch=>Include Library=>Manage Libraries). You can then use uECC just like any other Arduino library (uECC should show up in the Sketch=>Import Library submenu).

See uECC.h for documentation for each function.

Compilation Notes

  • Should compile with any C/C++ compiler that supports stdint.h (this includes Visual Studio 2013).
  • If you want to change the defaults for any of the uECC compile-time options (such as uECC_OPTIMIZATION_LEVEL), you must change them in your Makefile or similar so that uECC.c is compiled with the desired values (ie, compile uECC.c with -DuECC_OPTIMIZATION_LEVEL=3 or whatever).
  • When compiling for a Thumb-1 platform, you must use the -fomit-frame-pointer GCC option (this is enabled by default when compiling with -O1 or higher).
  • When compiling for an ARM/Thumb-2 platform with uECC_OPTIMIZATION_LEVEL >= 3, you must use the -fomit-frame-pointer GCC option (this is enabled by default when compiling with -O1 or higher).
  • When compiling for AVR, you must have optimizations enabled (compile with -O1 or higher).
  • When building for Windows, you will need to link in the advapi32.lib system library.

About

fork with support for FHMQV and further platforms

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • PHP 69.4%
  • Pawn 11.3%
  • C++ 8.5%
  • C 8.1%
  • Python 2.7%