Skip to content

knjcode/kaggle-kuzushiji-recognition-2019

Repository files navigation

kuzushiji-recognition-2019

https://www.kaggle.com/c/kuzushiji-recognition/

3rd place solution

See overview.md for an overview of my solution.

Prerequisites

  • python 3.6 or 3.7
  • docker
  • nvidia-docker

Setup

$ pip install -r requirements.txt

Download and preprocess dataset of this competition

Download and place the dataset of this competition as below.

input
├── train_images/
├── test_images/
└── train.csv

and run preprocess.sh

$ bash preprocess.sh

Reproduce final submission

Download trained models

Download the following 8 models and save it in the models directory

detection models

classification models

FalsePositive predictor for postprocessing

Generate object detection results

Run docker image and run test_detector.sh

$ ./run.sh
# bash test_detector.sh
... wait many hours  ## takes about 5 hours on a GCP server with V100x8

Generates 2 prediction results

  • models/test_060000.pth
  • models/test_100000.pth

If you uncommented validation secition of test_detector.sh, it generates more 2 prediction results. This results is needed when you want to reproduce FalsePositive detection model.

  • models/val_060000.pth
  • models/val_100000.pth

You can also download the generated object detection results from here.

Generate results with single detector and single model

$ bash scripts/auto_generate_per_model_results.sh

Generates 10 results

test_detector_060000_tta7_01_efficientnet_b4 test_detector_060000_tta7_02_resnet152 test_detector_060000_tta7_03_seresnext101 test_detector_060000_tta7_04_seresnext101 test_detector_060000_tta7_05_resnet152 test_detector_100000_tta7_01_efficientnet_b4 test_detector_100000_tta7_02_resnet152 test_detector_100000_tta7_03_seresnext101 test_detector_100000_tta7_04_seresnext101 test_detector_100000_tta7_05_resnet152

Ensemble generated results

$ python scripts/results_fusion_test_060000.py
$ python scripts/results_fusion_test_100000.py

Generates 2 ensemble results

test_detector_060000_tta7_5models_hard_prob test_detector_100000_tta7_5models_hard_prob

NMS with 2 ensemble results

$ python scripts/results_nms_test.py

Generates nms results test_nms030_tta7_5models_hard_prob

Postprocessing (FalsePositive predictor)

Remove FalsePositive bbox using LightGBM FalsePositive predictor and generate final submission csv.

$ python scripts/remove_false_positive_and_gen_csv.py

Generates final_submission.csv

How to make predictions on a new test set

Preprocess images

Place images input/test_images with jpeg format.

$ ls input/test_images
kuzushiji_sample_01.jpg  kuzushiji_sample_02.jpg

Replace input/test_images.list include your image filename without extension

$ cat input/test_images.list
kuzushiji_sample_01
kuzushiji_sample_02
$ python scripts/denoising_and_bens_preprocessing.py test
./input/denoised_test/kuzushiji_sample_01.png
./input/denoised_test/kuzushiji_sample_02.png

Generate detection results

Remove if object detection results already exists.

$ rm models/test_060000.pth
$ rm models/test_100000.pth

Generate character detection results

$ bash test_detector.sh

Generate recognition results

If FileExistsError occurs, delete the target directory and re-execute

$ bash scripts/auto_generate_per_model_results.sh
$ python scripts/results_fusion_test_060000.py
$ python scripts/results_fusion_test_100000.py
$ python scripts/results_nms_test.py
$ python scripts/remove_false_positive_and_gen_csv.py

Visualize recognition results

$ python scripts/plot_recognition_results.py test_nms030_tta7_5models_hard_prob input/test_images
saved: test_nms030_tta7_5models_hard_prob/kuzushiji_sample_01_with_results.jpg
saved: test_nms030_tta7_5models_hard_prob/kuzushiji_sample_02_with_results.jpg

Images containing recognition results are saved under test_nms030_tta7_5models_hard_prob directory.

Reproduce models

Reproducing process of the three models of detection, classification, FalsePositive predictor.

Reproduce detection model

Detection model use Faster R-CNN with:

  • ResNet101 backbone
  • Multi-scale train&test
  • data augmentation (brightness, contrast, saturation, hue, random grayscale)
  • no vertical and horizontal flip

use customized maskrcnn_benchmark

Training Detection model with all train images. And validation with public Leaderboard score.

See config for details. e2e_faster_rcnn_R_101_C4_1x_2_gpu_voc.yaml

Use docker, to reproduce character detection model.

$ bash build.sh  ### build docker image
$ bash run.sh  ### run docker container
# cd /work
# bash train_detector.sh
... wait a few hours

trained model is saved in the kuzushiji_recognition_R101_C4 directory.

To generate detection results, use test_detector.sh inside docker container.

$ ./run.sh
# bash test_detector.sh
... wait a few hours

Reproduce Character classification model

Use scripts under train_scripts directory

$ bash train_scripts/01_efficientnet_b4_val15779_l2softmax_mixup_re_normalize_gray190.sh
...

For details, see train_scripts/README.md

Reproduce FalsePositive predictor

Train FalsePositive predictor using results of validation data (val_nms030_tta7_5models_hard_prob)

generate validation resutls

Fix auto_generate_per_model_results.sh for validation (uncomment 6th line and comment out 7th line).

$ bash scripts/auto_generate_per_model_results.sh

Generates 10 validation results

val_detector_060000_tta7_01_efficientnet_b4 val_detector_060000_tta7_02_resnet152 val_detector_060000_tta7_03_seresnext101 val_detector_060000_tta7_04_seresnext101 val_detector_060000_tta7_05_resnet152 val_detector_100000_tta7_01_efficientnet_b4 val_detector_100000_tta7_02_resnet152 val_detector_100000_tta7_03_seresnext101 val_detector_100000_tta7_04_seresnext101 val_detector_100000_tta7_05_resnet152

Ensemble generated results

$ python scripts/results_fusion_val_060000.py
$ python scripts/results_fusion_val_100000.py

Generates 2 ensemble results

val_detector_060000_tta7_5models_hard_prob val_detector_100000_tta7_5models_hard_prob

nms with 2 ensemble results

$ python scripts/results_nms_val.py

generates nms results

val_nms030_tta7_5models_hard_prob

Hypter parameter search with optuna

Search hyper parameter with validation results.

$ python scripts/optuna_search_for_false_positive_detector.py
... wait a few hours
{'lambda_l1': 0.002050689306354841, 'lambda_l2': 0.49425078611198464, 'num_leaves': 203, 'feature_fraction': 0.8606773005600517, 'bagging_fraction': 0.9526576962122715, 'bagging_freq': 2, 'min_child_samples': 66}

and generates extracted feature data

val_nms030_tta7_5models_hard_prob.feather

Train LightGBM model 5fold cv using searched hypter parameters

Train LightGBM FalsePositive predictor reuse generated features at hyper parameter searching.

$ python scripts/gen_false_positive_detector.py`
...
saved: models/booster_for_val_nms030_tta7_5models_hard_prob.pkl

License

MIT

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published